98%
921
2 minutes
20
In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515495 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1005610 | DOI Listing |
Eur J Clin Microbiol Infect Dis
September 2025
Department of Infectious and Tropical Diseases, Toulouse University Hospital, Toulouse, 31059 Cedex 9, France.
Purpose: This narrative review aims to provide an overview of current knowledge on mpox, emphasizing updated epidemiology and recent advances in treatment and prevention strategies, in light of the latest outbreaks.
Methods: We searched PubMed and Google Scholar for publications on 'Mpox' and 'Monkeypox' up to June 5, 2025. Grey literature from governmental and health agencies was also accessed for outbreak reports and guidelines where published evidence was unavailable.
Chaos
September 2025
Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil.
Neuronal heterogeneity, characterized by a multitude of spiking neuronal patterns, is a widespread phenomenon throughout the nervous system. In particular, the brain exhibits strong variability among inhibitory neurons. Despite the huge neuronal heterogeneity across brain regions, which in principle could decrease synchronization due to differences in intrinsic neuronal properties, cortical areas coherently oscillate during various cognitive tasks.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.
Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Functional Materials and Devices for Special Environments Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi, 830011, P. R. China.
Owing to its wide bandgap, LaAlO has garnered extensive attention in the field of high-temperature negative temperature coefficient (NTC) thermistors. However, its poor thermal stability and excessively high B value limit the working temperature range. In this work, introducing O 2p and Ni 3d hybrid energy levels into the bandgap is proposed via Ni doping and inducing stacking faults in the crystal structure to narrow the bandgap and enhance aging performance.
View Article and Find Full Text PDF