A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Measurement of Pharyngo-laryngeal Volume During Swallowing Using 320-Row Area Detector Computed Tomography. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to (1) evaluate changes in bolus and air volumes in the pharyngo-laryngeal cavity during swallowing and (2) determine how differences in these volumes during swallowing are influenced by bolus amount using 320-row area detector computed tomography (320-ADCT). Three-, 10-, and 20-ml honey-thick liquids (5% w/v) were presented to ten healthy subjects placed in a 45° reclining position. 3D images were created in 29 phases at an interval of 0.1 s for 3.15 s. Changes in bolus and air volumes in the pharyngo-laryngeal cavity were calculated. The two one-sided tests were used to determine equivalency of the pharyngo-laryngeal volume of each event (i.e., onset of hyoid elevation, soft palate closure, true vocal cord closure, closure of laryngeal vestibule, epiglottis inversion, pharyngo-esophageal sphincter opening) for each bolus volume. The pharyngo-laryngeal volume during swallowing was about 20 ml before swallowing. The volume temporarily increased with tongue loading, but decreased to about 0 ml with pharyngeal contraction. Subsequently, the volume returned to the original volume after airway opening. Most of the air was released from the pharyngo-laryngeal space before the bolus flowed into the esophagus during swallowing. As the bolus volume to be swallowed increased, the maximal pharyngo-laryngeal volume increased, but changes in air volume remained constant. 320-ADCT allowed for analysis of dynamic volume changes in the pharyngo-laryngeal cavity, which will increase our knowledge of kinematic and volumetric mechanisms during swallowing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00455-017-9818-yDOI Listing

Publication Analysis

Top Keywords

pharyngo-laryngeal volume
16
pharyngo-laryngeal cavity
12
volume
11
volume swallowing
8
320-row area
8
area detector
8
detector computed
8
computed tomography
8
changes bolus
8
bolus air
8

Similar Publications