Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The Rho GTPase family members Rac1, Cdc42 and RhoA play key contributory roles in the transformed phenotype of human cancers. Epithelial Cell Transforming Sequence 2 (Ect2), a guanine nucleotide exchange factor (GEF) for these Rho GTPases, has also been implicated in a variety of human cancers. We have shown that Ect2 is frequently overexpressed in both major forms of non-small cell lung cancer (NSCLC), lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSCC), which together make up approximately 70% of all lung cancer diagnoses. Furthermore, we have found that Ect2 is required for multiple aspects of the transformed phenotype of NSCLC cells including transformed growth and invasion and tumorigenesis . More recently, we showed that a major mechanism by which Ect2 drives -mediated LADC transformation is by regulating rRNA (rRNA) synthesis. However, it remains unclear whether Ect2 plays a similar role in ribosome biogenesis in LSCC. Here we demonstrate that Ect2 expression correlates positively with expression of ribosome biogenesis genes and with pre-ribosomal 45S RNA abundance in primary LSCC tumors. Furthermore, we demonstrate that Ect2 functionally regulates rRNA synthesis in LSCC cells. Based on these data, we propose that inhibition of Ect2-mediated nucleolar signaling holds promise as a potential therapeutic strategy for improved treatment of both LADC and LSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748369 | PMC |
http://dx.doi.org/10.1080/21541248.2017.1335274 | DOI Listing |