A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Biomechanical Properties of 3-Dimensional Printed Volar Locking Distal Radius Plate: Comparison With Conventional Volar Locking Plate. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This study evaluated the biomechanical properties of a new volar locking plate made by 3-dimensional printing using titanium alloy powder and 2 conventional volar locking plates under static and dynamic loading conditions that were designed to replicate those seen during fracture healing and early postoperative rehabilitation.

Methods: For all plate designs, 12 fourth-generation synthetic composite radii were fitted with volar locking plates according to the manufacturers' technique after segmental osteotomy. Each specimen was first preloaded 10 N and then was loaded to 100 N, 200 N, and 300 N in phases at a rate of 2 N/s. Each construct was then dynamically loaded for 2,000 cycles of fatigue loading in each phase for a total 10,000 cycles. Finally, the constructs were loaded to a failure at a rate of 5 mm/min.

Results: All 3 plates showed increasing stiffness at higher loads. The 3-dimensional printed volar locking plate showed significantly higher stiffness at all dynamic loading tests compared with the 2 conventional volar locking plates. The 3-dimensional printed volar locking plate had the highest yield strength, which was significantly higher than those of 2 conventional volar locking plates.

Conclusions: A 3-dimensional printed volar locking plate has similar stiffness to conventional plates in an experimental model of a severely comminuted distal radius fracture in which the anterior and posterior metaphyseal cortex are involved.

Clinical Relevance: These results support the potential clinical utility of 3-dimensional printed volar locking plates in which design can be modified according the fracture configuration and the anatomy of the radius.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhsa.2017.05.009DOI Listing

Publication Analysis

Top Keywords

volar locking
44
3-dimensional printed
20
printed volar
20
locking plate
20
conventional volar
16
locking plates
16
volar
11
locking
11
biomechanical properties
8
distal radius
8

Similar Publications