A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The visual encoding of purely proprioceptive intermanual tasks is due to the need of transforming joint signals, not to their interhemispheric transfer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To perform goal-oriented hand movement, humans combine multiple sensory signals (e.g., vision and proprioception) that can be encoded in various reference frames (body centered and/or exo-centered). In a previous study (Tagliabue M, McIntyre J. 8: e68438, 2013), we showed that, when aligning a hand to a remembered target orientation, the brain encodes both target and response in visual space when the target is sensed by one hand and the response is performed by the other, even though both are sensed only through proprioception. Here we ask whether such visual encoding is due ) to the necessity of transferring sensory information across the brain hemispheres, or ) to the necessity, due to the arms' anatomical mirror symmetry, of transforming the joint signals of one limb into the reference frame of the other. To answer this question, we asked subjects to perform purely proprioceptive tasks in different conditions: Intra, the same arm sensing the target and performing the movement; Inter/Parallel, one arm sensing the target and the other reproducing its orientation; and Inter/Mirror, one arm sensing the target and the other mirroring its orientation. Performance was very similar between Intra and Inter/Mirror (conditions not requiring joint-signal transformations), while both differed from Inter/Parallel. Manipulation of the visual scene in a virtual reality paradigm showed visual encoding of proprioceptive information only in the latter condition. These results suggest that the visual encoding of purely proprioceptive tasks is not due to interhemispheric transfer of the proprioceptive information per se, but to the necessity of transforming joint signals between mirror-symmetric limbs. Why does the brain encode goal-oriented, intermanual tasks in a visual space, even in the absence of visual feedback about the target and the hand? We show that the visual encoding is not due to the transfer of proprioceptive signals between brain hemispheres per se, but to the need, due to the mirror symmetry of the two limbs, of transforming joint angle signals of one arm in different joint signals of the other.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596132PMC
http://dx.doi.org/10.1152/jn.00140.2017DOI Listing

Publication Analysis

Top Keywords

visual encoding
20
transforming joint
16
joint signals
16
purely proprioceptive
12
arm sensing
12
sensing target
12
visual
9
encoding purely
8
intermanual tasks
8
interhemispheric transfer
8

Similar Publications