Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The CEGS N-GRID 2016 Shared Task (Filannino et al., 2017) in Clinical Natural Language Processing introduces the assignment of a severity score to a psychiatric symptom, based on a psychiatric intake report. We present a method that employs the inherent interview-like structure of the report to extract relevant information from the report and generate a representation. The representation consists of a restricted set of psychiatric concepts (and the context they occur in), identified using medical concepts defined in UMLS that are directly related to the psychiatric diagnoses present in the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) ontology. Random Forests provides a generalization of the extracted, case-specific features in our representation. The best variant presented here scored an inverse mean absolute error (MAE) of 80.64%. A concise concept-based representation, paired with identification of concept certainty and scope (family, patient), shows a robust performance on the task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705466PMC
http://dx.doi.org/10.1016/j.jbi.2017.06.007DOI Listing

Publication Analysis

Top Keywords

random forests
8
psychiatric intake
8
psychiatric
5
counting trees
4
trees random
4
forests predicting
4
predicting symptom
4
symptom severity
4
severity psychiatric
4
intake reports
4

Similar Publications

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Sustainable urban development requires actionable insights into the thermal consequences of land transformation. This study examines the impact of land use and land cover (LULC) changes on land surface temperature (LST) in Ho Chi Minh city, Vietnam, between 1998 and 2024. Using Google Earth Engine (GEE), three machine learning algorithms-random forest (RF), support vector machine (SVM), and classification and regression tree (CART)-were applied for LULC classification.

View Article and Find Full Text PDF

Navigating condensate micropolarity to enhance small-molecule drug targeting.

Nat Chem Biol

September 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.

View Article and Find Full Text PDF

Severe fever with thrombocytopaenia syndrome virus (SFTSV) was identified by the World Health Organization as a priority pathogen due to its high case-fatality rate in humans and rapid spread. It is maintained in nature through three transmission pathways: systemic, non-systemic and transovarial. Understanding the relative contributions of these transmission pathways is crucial for developing evidence-informed public health interventions to reduce its spillover risks to humans.

View Article and Find Full Text PDF

Machine learning based classification of imagined speech electroencephalogram data from the amplitude and phase spectrum of frequency domain EEG signal.

Biomed Phys Eng Express

September 2025

electrical engineering department, Indian Institute of Technology Roorkee, Research wing, electrical department, Roorkee, uttrakhand, 247664, INDIA.

Imagined speech classification involves decoding brain signals to recognize verbalized thoughts or intentions without actual speech production. This technology has significant implications for individuals with speech impairments, offering a means to communicate through neural signals. The prime objective of this work is to propose an innovative machine learning (ML) based classification methodology that combines electroencephalogram (EEG) data augmentation using a sliding window technique with statistical feature extraction from the amplitude and phase spectrum of frequency domain EEG segments.

View Article and Find Full Text PDF