Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384161PMC
http://dx.doi.org/10.1093/biosci/biw158DOI Listing

Publication Analysis

Top Keywords

arctic twenty-first
4
twenty-first century
4
century changing
4
changing biogeochemical
4
biogeochemical linkages
4
linkages paraglacial
4
paraglacial landscape
4
landscape greenland
4
greenland kangerlussuaq
4
kangerlussuaq area
4

Similar Publications

Atlantification is an ongoing oceanic phenomenon characterised by the expansion of the typical Atlantic domain towards the Arctic, driving rapid oceanic and ecological changes in the European Arctic. Using reanalyses and a multi-model ensemble of unperturbed and transient preindustrial, historical and future-scenario simulations, this study shows that modern Atlantification possibly initiated in the late nineteenth century, preceded by several "Arctification" episodes in the preindustrial millennium. In the historical period, Atlantification and pan-Arctic warming superposed constructively to drive upper-ocean warming and salinification in the Barents Sea.

View Article and Find Full Text PDF

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) addresses the interacting effects of changes in stratospheric ozone, solar ultraviolet (UV) radiation, and climate on the environment and human health. These include new modelling studies that confirm the benefits of the Montreal Protocol in protecting the stratospheric ozone layer and its role in maintaining a stable climate, both at low and high latitudes. We also provide an update on projected levels of solar UV-radiation during the twenty-first century.

View Article and Find Full Text PDF

Antarctic toothfish are a commercially exploited upper-level predator in the Southern Ocean. As many of its prey, the ectothermic, water-breathing Antarctic toothfish is specifically adapted to the temperature and oxygen conditions present in the high-latitude Southern Ocean. Additionally, the life cycle of Antarctic toothfish depends on sea-ice dynamics and the transport of individuals by currents between regions with different prey.

View Article and Find Full Text PDF

21 century surface UV radiation changes deduced from CMIP6 models: part I-evolution of major influencing factors.

Photochem Photobiol Sci

January 2025

Institute of Meteorology and Climate Research Atmospheric Trace Gases and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, Germany.

For a given solar elevation, the levels of solar ultraviolet radiation at the Earth's surface are determined by the amounts of ozone, aerosols, and clouds, as well as by the reflectivity of the surface. Here, we study the evolution of these factors for three selected decades in the period 1950-2100 using results from simulations with Earth-System models (ESMs) participating in the 6 phase of the Coupled Model Intercomparison Project (CMIP6). The simulations for the future are based on three Shared Socioeconomic Pathways: SSP1-2.

View Article and Find Full Text PDF

High Arctic lakes reveal accelerating ecological shifts linked to twenty-first century warming.

Sci Rep

January 2025

Department of Geography, Centre for Northern Studies (CEN), & Takuvik International Research Laboratory, Université Laval, Québec, QC, Canada.

The Arctic is among the most rapidly warming regions on Earth, and climate change has triggered widespread alterations to its cryosphere and ecosystems. Among these, high Arctic lakes are highly sensitive to rising temperatures due to the influence of ice cover on multiple limnological processes. Here, we studied the sediments of three lakes on northern Ellesmere Island (82.

View Article and Find Full Text PDF