98%
921
2 minutes
20
Background: Sarcopenia was recently recognized as an independent condition by an International Classification of Diseases, Tenth Revision, Clinical Modification code, and is a frequently observed comorbidity in chronic obstructive pulmonary disease (COPD). Muscle mass is primarily dictated by the balance between protein degradation and synthesis, but their relative contribution to sarcopenia is unclear.
Objective: We aimed to assess potential differential molecular regulation of protein degradation and synthesis, as well as myogenesis, in the skeletal muscle of COPD patients with and without sarcopenia.
Methods: Muscle biopsies were obtained from the vastus lateralis muscle. Patients with COPD were clustered based on sarcopenia defined by low appendicular skeletal muscle mass index (nonsarcopenic COPD, n = 53; sarcopenic COPD, n = 39), and compared with healthy nonsarcopenic controls (n = 13). The mRNA and protein expression of regulators and mediators of ubiquitin-proteasome system (UPS), autophagy-lysosome system (autophagy), and protein synthesis were analyzed. Furthermore, mRNA expression of myogenesis markers was assessed.
Results: UPS signaling was unaltered, whereas indices of UPS regulation (eg, FOXO1 protein; p-FOXO3/FOXO3), autophagy signaling (eg, LC3BII/I; p-ULK1[Ser757]/ULK1), and protein synthesis signaling (eg, AKT1; p-GSK3B/GSK3B; p-4E-BP1/4E-BP1) were increased in COPD. These alterations were even more pronounced in COPD patients with sarcopenia (eg, FOXO1 protein; p-FOXO1/FOXO1; LC3BII/I; p-ULK(Ser555); p-AKT1/AKT1; AKT1; p-4E-BP1). Furthermore, myogenic signaling (eg, MYOG) was increased in COPD despite a concomitant increase of myostatin (MSTN) mRNA expression, with no difference between sarcopenic and nonsarcopenic COPD patients.
Conclusion: Together with elevated myogenic signaling, the increase in muscle protein turnover signaling in COPD, which is even more prominent in COPD patients with sarcopenia, reflects molecular alterations associated with muscle repair and remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jamda.2017.04.016 | DOI Listing |
J Foot Ankle Res
September 2025
Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA.
Introduction: Intrinsic foot muscles and the plantar fascia are crucial for foot health, which diminishes with age and conditions such as chronic plantar fasciitis (PF). Ultrasound (US) is an accessible and cost-effective method for evaluating these structures. This study aims to assess the repeatability, reliability, and validity of plantar fascia thickness and flexor digitorum brevis (FDB) muscle measurements using US compared with MRI in individuals with and without PF.
View Article and Find Full Text PDFFASEB J
September 2025
School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
Most animals experience abrupt developmental transitions involving major tissue remodeling, but the links with metabolic changes remain poorly understood. We examined ontogenetic changes in mitochondrial volume, oxidative capacity, oxygen consumption capacity, and anaerobic capacity across four organs (gut, liver, heart, and hindlimb muscle) in Xenopus laevis from metamorphosis to adulthood. These organs differ in the extent of developmental transformation.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
September 2025
Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
Background: Cancer promotes muscle wasting through an imbalance in the tightly regulated protein synthesis and degradation processes. An array of intracellular signalling pathways, including mTORC1 and AMPK, regulate protein synthesis, and these pathways are responsive to the muscle's microenvironment and systemic stimuli. Although feeding and fasting are established systemic regulators of muscle mTORC1 and protein synthesis, the cancer environment's impact on these responses during cachexia development is poorly understood.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
October 2025
Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
Background: Body composition alterations such as skeletal muscle (SM) loss in cancer patients are associated with poor survival. In turn, immune cell-driven pathways have been linked to muscle wasting. We aimed to investigate the relationship between body composition, tumour-infiltrating lymphocytes and survival in patients with advanced lung cancer.
View Article and Find Full Text PDFLab Anim Res
September 2025
Department of Pathology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
Background: Stroke-prone spontaneously hypertensive rats (SHRSP) exhibit slow-twitch muscle-specific hypotrophy compared with normotensive Wistar-Kyoto rats (WKY). Because slow-twitch muscles are prone to disuse atrophy, SHRSP may experience both disuse atrophy and impaired recovery from it. This study investigated the response of SHRSP to disuse atrophy and subsequent recovery, using WKY as a control.
View Article and Find Full Text PDF