98%
921
2 minutes
20
Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364677 | PMC |
http://dx.doi.org/10.1021/acs.biomac.7b00589 | DOI Listing |
J Am Chem Soc
March 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.
We report the synthesis of amphiphilic poly(l-methionine sulfoxide)--poly(dehydroalanine), diblock copolypeptides, , and their self-assembly into submicrometer-diameter unilamellar vesicles in aqueous media. The formation of vesicles was observed over an unprecedented range of copolypeptide compositions due to the unique properties and chain conformations of hydrophobic segments. These copolypeptides incorporate two distinct thiol reactive components where each segment can respond differently to a single thiol stimulus.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
Hydrogel three-dimensional (3D) printing has emerged as a highly valuable fabrication tool for applications ranging from electronics and biomedicine. While conventional hydrogels such as gelatin, alginate, and hyaluronic acid satisfy biocompatibility requirements, they distinctly lack reproducibility in terms of mechanical properties and 3D printability. Aiming to offer a high-performance alternative, here we present a range of amphiphilic star-shaped diblock copolypeptides of l-glutamate and l-leucine residues with different topologies.
View Article and Find Full Text PDFJ Mater Chem B
September 2024
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
Targeted and efficient gene delivery systems hold tremendous potential for the improvement of cancer therapy by enabling appropriate modification of biological processes. Herein, we report the design and synthesis of a novel cationic di-block copolypeptide, incorporating homoarginine (HAG) and shikimoyl (LSA) functionalities (HDA-b-PHAGm-b-PLSAn), tailored for enhanced gene transfection specifically in cancer cells. The di-block copolypeptide was synthesized sequential -carboxyanhydride (NCA) ring-opening polymerization (ROP) techniques and its physicochemical properties were characterized, including molecular weight, dispersity, secondary conformation, size, morphology, and surface charge.
View Article and Find Full Text PDFRegen Biomater
April 2023
CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Stimuli-responsive synthetic polypeptide-containing block copolymers have received considerable attention in recent years. Especially, unique thermo-induced sol-gel phase transitions were observed for elaborately-designed amphiphilic diblock copolypeptides and a range of poly(ethylene glycol) (PEG)-polypeptide block copolymers. The thermo-induced gelation mechanisms involve the evolution of secondary conformation, enhanced intramolecular interactions, as well as reduced hydration and increased chain entanglement of PEG blocks.
View Article and Find Full Text PDFAdv Mater
January 2023
Materials Research Laboratory (MRL), University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
Hydrogels hold much promise for 3D printing of functional living materials; however, challenges remain in tailoring mechanical robustness as well as biological performance. In addressing this challenge, the modular synthesis of functional hydrogels from 3-arm diblock copolypeptide stars composed of an inner poly(l-glutamate) domain and outer poly(l-tyrosine) or poly(l-valine) blocks is described. Physical crosslinking due to ß-sheet assembly of these star block copolymers gives mechanical stability during extrusion printing and the selective incorporation of methacrylate units allows for subsequent photocrosslinking to occur under biocompatible conditions.
View Article and Find Full Text PDF