A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tensorial elastic properties and stability of interface states associated with Σ5(210) grain boundaries in Ni(Al,Si). | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grain boundaries (GBs) represent one of the most important types of defects in solids and their instability leads to catastrophic failures in materials. Grain boundaries are challenging for theoretical studies because of their distorted atomic structure. Fortunately, quantum-mechanical methods can reliably compute their properties. We calculate and analyze (tensorial) anisotropic elastic properties of periodic approximants of interface states associated with GBs in one of the most important intermetallic compounds for industrial applications, NiAl, appearing in Ni-based superalloys. Focusing on the Σ5(210) GBs as a case study, we assess the mechanical stability of the corresponding interface states by checking rigorous elasticity-based Born stability criteria. The critical elastic constant is found three-/five-fold softer contributing thus to the reduction of the mechanical stability of NiAl polycrystals (experiments show their GB-related failure). The tensorial elasto-chemical complexity of interface states associated with the studied GBs exemplifies itself in high sensitivity of elastic constants to the GB composition. As another example we study the impact caused by Si atoms segregating into the atomic layers close to the GB and substituting Al atoms. If wisely exploited, our study paves the way towards solute-controlled design of GB-related interface states with controlled stability and/or tensorial properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439394PMC
http://dx.doi.org/10.1080/14686996.2017.1312519DOI Listing

Publication Analysis

Top Keywords

interface states
20
states associated
12
grain boundaries
12
elastic properties
8
mechanical stability
8
stability
5
interface
5
states
5
tensorial
4
tensorial elastic
4

Similar Publications