98%
921
2 minutes
20
In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length scales. To assess beam damage at the angstrom scale, we followed the intensity of P3HT and PCBM diffraction rings as a function of accumulated electron dose by acquiring dose series and varying the electron dose rate, sample preparation, and the temperature during acquisition. From this, we calculated a critical dose for diffraction experiments. In imaging mode, thin film deformation was assessed using the normalized cross-correlation coefficient, while mass loss was determined via changes in average intensity and standard deviation, also varying electron dose rate, sample preparation, and temperature during acquisition. The understanding of beam damage and the determination of critical electron doses provides a framework for future experiments to maximize the information content during the acquisition of images and diffraction patterns with (cryogenic) transmission electron microscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442601 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.7b01749 | DOI Listing |
Biochem Biophys Rep
December 2025
Henan University of Chinese Medicine, Zhengzhou, 450046, China.
Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Medical Imaging, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong Province, China.
Abstract Rationale: Nonossifying fibroma (NOF) is one of the benign bone tumors in adolescents, and it rarely occurs in the jawbone. According to the site of onset, it is divided into the cortical type and the medullary type. Currently, there is no case report of medullary NOF in the mandible of the elderly.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2025
Institute of Biomedical Engineering, TU Dresden, Fetscherstr. 29, Dresden 01307, Germany.
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs.
View Article and Find Full Text PDFClin Oncol (R Coll Radiol)
August 2025
School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom. Electronic address:
Targeted radionuclide therapy (TRT) involves systemic administration of a radionuclide attached to a cancer-targeting moiety. It has been proven to be a promising approach for primary cancer and metastasis treatment with minimal damage to surrounding tissues. TRT integrates the precision of molecular targeting with the therapeutic efficacy of radiation.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette CEDEX, France.
The effect of adding Na and Mg metal ions on soft X-ray induced photochemistry (SXIP) is investigated. To that aim, the soft X-ray beam of the METROLOGIE beamline at the SOLEIL synchrotron was extracted through air to irradiate solutions circulating in a microfluidic cell. Benzoate was used as a sensitive profluorescent probe for hydroxyl radicals.
View Article and Find Full Text PDF