98%
921
2 minutes
20
It is often desirable to be able to recognize when inputs to a recognition function learned in a supervised manner correspond to classes unseen at training time. With this ability, new class labels could be assigned to these inputs by a human operator, allowing them to be incorporated into the recognition function-ideally under an efficient incremental update mechanism. While good algorithms that assume inputs from a fixed set of classes exist, e.g. , artificial neural networks and kernel machines, it is not immediately obvious how to extend them to perform incremental learning in the presence of unknown query classes. Existing algorithms take little to no distributional information into account when learning recognition functions and lack a strong theoretical foundation. We address this gap by formulating a novel, theoretically sound classifier-the Extreme Value Machine (EVM). The EVM has a well-grounded interpretation derived from statistical Extreme Value Theory (EVT), and is the first classifier to be able to perform nonlinear kernel-free variable bandwidth incremental learning. Compared to other classifiers in the same deep network derived feature space, the EVM is accurate and efficient on an established benchmark partition of the ImageNet dataset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2017.2707495 | DOI Listing |
Bioinform Adv
August 2025
Department of CSE, BUET, Dhaka 1000, Bangladesh.
Motivation: Heavy usage of synthetic nitrogen fertilizers to satisfy the increasing demands for food has led to severe environmental impacts like decreasing crop yields and eutrophication. One promising alternative is using nitrogen-fixing microorganisms as biofertilizers, which use the nitrogenase enzyme. This could also be achieved by expressing a functional nitrogenase enzyme in the cells of the cereal crops.
View Article and Find Full Text PDFFront Physiol
August 2025
Department of Ultrasound, Deyang People's Hospital, Deyang, Sichuan, China.
Background: Antiphospholipid syndrome (APS) is a major immune-related disorder that leads to adverse pregnancy outcomes (APO), including recurrent miscarriage, placental abruption, preterm birth, and fetal growth restriction. Antiphospholipid antibodies (aPLs), particularly anticardiolipin antibodies (aCL), anti-β2-glycoprotein I antibodies (aβ2GP1), and lupus anticoagulant (LA), are considered key biomarkers for APS and are closely associated with adverse pregnancy outcomes. This is a prospective observational cohort study to use machine learning model to predict adverse pregnancy outcomes in APS patients using early pregnancy aPL levels and clinical features.
View Article and Find Full Text PDFEpigenomics
September 2025
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Aims: Psychological resilience refers to an individual's capacity to adapt to adverse events. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional processes, while small extracellular vesicles (sEVs) act as transport vehicles. This study aimed to employ genome-wide profiling to identify and validate differences in the expression of resilience-associated sEV-miRNAs between low resilience (LR) and high resilience (HR) in young adults.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
Dissolved oxygen (DO) is a key water quality indicator reflecting river health. Modeling and understanding the spatiotemporal dynamics of DO and its influencing factors are crucial for effective river management. Machine learning (ML) models have gained popularity in water quality prediction; however, their accuracy strongly depends on the predictor variables.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Max Planck Institute for Solar System Research, Göttingen 37077, Germany.
Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.
View Article and Find Full Text PDF