Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The slow-bond problem is a long-standing question about the minimal strength ε_{c} of a local defect with global effects on the Kardar-Parisi-Zhang (KPZ) universality class. A consensus on the issue has been delayed due to the discrepancy between various analytical predictions claiming ε_{c}=0 and numerical observations claiming ε_{c}>0. We revisit the problem via finite-size scaling analyses of the slow-bond effects, which are tested for different boundary conditions through extensive Monte Carlo simulations. Our results provide evidence that the previously reported nonzero ε_{c} is an artifact of a crossover phenomenon which logarithmically converges to zero as the system size goes to infinity.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.95.042123DOI Listing

Publication Analysis

Top Keywords

local defect
8
effects local
4
defect one-dimensional
4
one-dimensional nonlinear
4
nonlinear surface
4
surface growth
4
growth slow-bond
4
slow-bond problem
4
problem long-standing
4
long-standing question
4

Similar Publications

Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.

View Article and Find Full Text PDF

Indium tin oxide (Sn/InO) is a degenerately doped semiconductor nanocrystal (NC) that exhibits localized surface plasmon resonance (LSPR) in the short-wavelength infrared electromagnetic spectral range. Alternative to metals, the tunability of LSPR is possible in doped semiconductor NCs by controlling the dopant type, doping level, and opto-electrochemical modulation. In this study, dopant oxidation valency in carrier density and LSPR peaks (Sn(IV): 1.

View Article and Find Full Text PDF

Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.

View Article and Find Full Text PDF

At the glutamatergic synapses between rod photoreceptors and ON-type bipolar cells, neurotransmitter is detected by the postsynaptic metabotropic glutamate receptor mGluR6. This receptor forms trans-synaptic interactions with ELFN1, a presynaptic cell adhesion molecule expressed in rods, and ELFN1 is important for mGluR6 localization at bipolar cell dendritic tips. Here, we show that in mice of either sex lacking mGluR6, the presynaptic localization of ELFN1 is disrupted.

View Article and Find Full Text PDF

Epithelia are specialized and selective tissue barriers that separate the organism's interior from the external environment. Among adult tissues, the gut epithelium must withstand microbial and biochemical insults but also mechanical stresses imposed by luminal contents and gastrointestinal motility. In addition, the continuous renewal of the intestinal epithelium creates tension that must be withstood by cell-cell junctions and the actomyosin cytoskeleton to preserve barrier integrity.

View Article and Find Full Text PDF