A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects of Gene Action, Marker Density, and Timing of Selection on the Performance of Landscape Genomic Scans of Local Adaptation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genomic "scans" to identify loci that contribute to local adaptation are becoming increasingly common. Many methods used for such studies have assumed that local adaptation is created by loci experiencing antagonistic pleiotropy (AP) and that the selected locus itself is assayed, and few consider how signals of selection change through time. However, most empirical data sets have marker density too low to assume that a selected locus itself is assayed, researchers seldom know when selection was first imposed, and many locally adapted loci likely experience not AP but conditional neutrality (CN). We simulated data to evaluate how these factors affect the performance of tests for genotype-environment association (GEA). We found that 3 types of regression-based analyses (linear models, mixed linear models, and latent factor mixed models) and an implementation of BayEnv all performed well, with high rates of true positives and low rates of false positives, when the selected locus experienced AP, and when the selected locus was assayed directly. However, all tests had reduced power to detect loci experiencing CN, and the probability of detecting associations was sharply reduced when physically linked rather than causative loci were sampled. AP also maintained detectable GEAs much longer than CN. Our analyses suggest that if local adaptation is often driven by loci experiencing CN, genome-scan methods will have limited capacity to find loci responsible for local adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esx042DOI Listing

Publication Analysis

Top Keywords

local adaptation
20
selected locus
16
loci experiencing
12
locus assayed
12
marker density
8
linear models
8
loci
7
local
5
adaptation
5
effects gene
4

Similar Publications