A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient experimental designs for isotropic generalized diffusion tensor MRI (IGDTI). | LitMetric

Efficient experimental designs for isotropic generalized diffusion tensor MRI (IGDTI).

Magn Reson Med

Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.

Published: January 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: We propose a new generalized diffusion tensor imaging (GDTI) experimental design and analysis framework for efficiently measuring orientationally averaged diffusion-weighted images (DWIs), which remove bulk signal modulations attributed to diffusion anisotropy and quantify isotropic higher-order diffusion tensors (HOT). We illustrate how this framework accelerates the clinical measurement of rotation-invariant tissue microstructural parameters derived from HOT, such as the HOT-Trace and the mean t-kurtosis.

Theory And Methods: For a large range of b-values, we compare orientationally averaged DWIs measured with high angular resolution diffusion imaging to those obtained with the proposed isotropic GDTI (IGDTI) experimental design. We compare rotation-invariant microstructural parameters measured with IGDTI to those derived from HOTs measured explicitly with GDTI.

Results: In both fixed-brain microimaging and in vivo clinical experiments, IGDTI accurately quantifies mean apparent diffusion coefficient (mADC)-weighted DWIs over a wide range of b-values and allows efficient computation of HOT-derived scalar tissue parameters from a small number of DWIs.

Conclusions: IGDTI provides direct and accurate estimates of orientationally averaged tissue water mobilities over a wide range of b-values. This efficient method may enable new, sensitive, and quantitative assessments for clinical applications in which changes in mADC can be observe,d such as detecting and characterizing stroke, cancers, and neurodegenerative diseases. Magn Reson Med 79:180-194, 2018. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675833PMC
http://dx.doi.org/10.1002/mrm.26656DOI Listing

Publication Analysis

Top Keywords

orientationally averaged
12
range b-values
12
generalized diffusion
8
diffusion tensor
8
experimental design
8
microstructural parameters
8
wide range
8
diffusion
6
igdti
5
efficient experimental
4

Similar Publications