98%
921
2 minutes
20
Objective: High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.e., high frequency or 60 Hz).
Methods: We retrospectively analyzed preoperative MDS-Unified Parkinson's Disease Rating Scale III scores (32 indicators) collected from 20 PD patients implanted with STN-DBS at Mount Sinai Medical Center on either 60 Hz stimulation (ten patients) or HFS (130-185 Hz) (ten patients) for an average of 12 months. Predictive models using the Random Forest classification algorithm were built to associate patient/disease characteristics at surgery to the stimulation frequency. These models were evaluated objectively using leave-one-out cross-validation approach.
Results: The computational models produced, stratified patients into 60 Hz or HFS (130-185 Hz) with 95% accuracy. The best models relied on two or three predictors out of the 32 analyzed for classification. Across all predictors, gait and rest tremor of the right hand were consistently the most important.
Conclusions: Computational models were developed using preoperative clinical indicators in PD patients treated with STN-DBS. These models were able to accurately stratify PD patients into 60 Hz stimulation or HFS (130-185 Hz) groups a priori, offering a unique potential to enhance the utilization of this therapy based on clinical subtypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ner.12607 | DOI Listing |
Mov Disord
August 2020
Movement Disorder Section of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.
Background: High-frequency (130-185 Hz) deep brain stimulation (DBS) of the subthalamic nucleus is more effective for appendicular than axial symptoms in Parkinson's disease (PD). Low-frequency (60-80 Hz) stimulation (LFS) may reduce gait/balance impairment but typically results in worsening appendicular symptoms. We created a "dual-frequency" programming paradigm (interleave-interlink, IL-IL) to address both axial and appendicular symptoms.
View Article and Find Full Text PDFNeurol Ther
December 2019
Movement Disorder Section of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison Street, Suite 755, Chicago, IL, 60612, USA.
Introduction: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) using high-frequency (130-185 Hz) stimulation (HFS) is more effective for appendicular than for axial symptoms. Low-frequency stimulation (LFS) of the STN may reduce gait/balance and speech impairment but can result in worsened appendicular symptoms, limiting its clinical usefulness. A novel dual-frequency paradigm (interleave-interlink, IL-IL) was created in order to reduce gait/balance and speech impairment while maintaining appendicular symptom control in Parkinson's disease (PD) patients chronically stimulated with DBS.
View Article and Find Full Text PDFNeuromodulation
July 2017
Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Objective: High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.
View Article and Find Full Text PDFJ Neurophysiol
December 2005
Laboratoire de Neurophysiologie, Centre National de la Recherche Scientifique Unté Mixte de Recherche 5543, Université de Bordeaux 2, France.
In clinical conditions, high-frequency stimulation (HFS) of subthalamic (STN) neurons in Parkinson's disease is empirically applied at > or =100 Hz (130-185 Hz), with pulses of short duration (60-100 micros) and 1- to 3-mA amplitude. Other parameter values produce no effect or aggravate the symptoms. To gain a better understanding of the mechanisms that underlie the therapeutic action of HFS, we have compared the effects of different combinations of parameter values delivered by clinical stimulators on the activity of STN neurons recorded in whole cell patch-clamp configuration in slices.
View Article and Find Full Text PDFJ Neurol
September 2001
Department of Neurosurgery, CHU A Michallon, Grenoble, France.
Chronic high frequency (130 Hz) stimulation (HFS) of the thalamic target Vim, first used in our group in 1987 as a treatment of tremor of various origins, has been used over the last ten years in 137 patients. Since 1993, this method has been extended to two other targets (subthalamic nucleus (STN): 137 patients and the medial pallidum (GPi): 12 patients), based on recent experimental data in rats and monkeys. STN appears to be a target of major interest, able to control the three cardinal symptoms and to allow the decrease or suppression of levodopa treatment, which then also suppresses levodopa induced dyskinesias.
View Article and Find Full Text PDF