Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-grade serous ovarian cancer is the most common ovarian cancer type. Although the combination of surgery and platinum-taxane chemotherapy provide an effective treatment, drug resistance frequently occurs leading to poor outcome. In order to clarify the molecular mechanisms of drug resistance, the DNA methylation and transcriptomic changes, associated with the development of drug resistance in high-grade serous ovarian cancer, were examined from patient derived malignant ascites cells. In parallel with large-scale transcriptome changes, cisplatin resistance was associated with loss of hypermethylation at several CpG sites primarily localized in the intergenic regions of the genome. The transcriptome and CpG methylome changes in response to cisplatin treatment of both sensitive and resistant cells were minimal, indicating the importance of post-translational mechanisms in regulating death or survival of the cells. The response of resistant cells to high concentrations of cisplatin revealed transcriptomic changes in potential key drivers of drug resistance, such as KLF4. Among the strongest changes was also induction of IL6 in resistant cells and the expression was further increased in response to cisplatin. Also, several other components of IL6 signaling were affected, further supporting previous observations on its importance in malignant transformation and development of drug resistance in ovarian cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431431PMC
http://dx.doi.org/10.1038/s41598-017-01624-4DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
drug resistance
20
resistant cells
12
dna methylation
8
transcriptome changes
8
changes associated
8
cisplatin resistance
8
resistance ovarian
8
high-grade serous
8
serous ovarian
8

Similar Publications

Availability of benign missense variant "truthsets" for validation of functional assays: Current status and a systematic approach.

Am J Hum Genet

September 2025

Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Fulham Road, London, UK. Electronic address:

Multiplex assays of variant effect (MAVEs) provide promising new sources of functional evidence, potentially empowering improved classification of germline genomic variants, particularly rare missense variants, which are commonly assigned as variants of uncertain significance (VUSs). However, paradoxically, quantification of clinically applicable evidence strengths for MAVEs requires construction of "truthsets" comprising missense variants already robustly classified as pathogenic and benign. In this study, we demonstrate how benign truthset size is the primary driver of applicable functional evidence toward pathogenicity (PS3).

View Article and Find Full Text PDF

Pan-carcinoma sialyl-Tn-targeting expands CAR therapy to solid tumors.

Cell Rep Med

September 2025

Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway. Electronic address:

Accurate identification of tumor-specific markers is vital for developing chimeric antigen receptor (CAR)-based therapies. While cell surface antigens are seldom cancer-restricted, their post-translational modifications (PTMs), particularly aberrant carbohydrate structures, offer attractive alternatives. Among these, the sialyl-Tn (STn) antigen stands out for its prevalent presence in various epithelial tumors.

View Article and Find Full Text PDF

ObjectiveThis study aimed to evaluate the efficacy and safety of hyperthermic intraperitoneal intraoperative chemotherapy (HIPEC) in patients with advanced ovarian cancer.MethodsA total of 200 patients with advanced ovarian cancer were enrolled in this retrospective study and randomly allocated to two groups (research registry number: 11353). On the first day after abdominal closure, routine treatment was performed in the non-HIPEC group, whereas HIPEC was performed in the HIPEC group.

View Article and Find Full Text PDF

Molecular impact of NOTCH signaling dysregulation on ovarian cancer progression, chemoresistance, and taxane response.

Biomed Pharmacother

September 2025

Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Laboratory of Pharmacogenomics, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic. Electronic address:

Patients with epithelial ovarian cancer (EOC) face high mortality due to late diagnosis, recurrence, metastasis, and drug resistance. The NOTCH signaling pathway plays a critical role in cancer progression. This study analyzed NOTCH pathway deregulation in EOC patients and its response to taxane treatment in vitro and in vivo.

View Article and Find Full Text PDF