Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
An important brain function is to predict upcoming events on the basis of extracted regularities of previous inputs. These predictive coding processes can disturb performance in concurrent perceptual decision-making and are known to depend on fronto-striatal circuits. However, it is unknown whether, and if so, to what extent striatal microstructural properties modulate these processes. We addressed this question in a human disease model of striosomal dysfunction, i.e. X-linked dystonia-parkinsonism (XDP), using high-density EEG recordings and source localization. The results show faster and more accurate perceptual decision-making performance during distraction in XDP patients compared to healthy controls. The electrophysiological data show that sensory memory and predictive coding processes reflected by the mismatch negativity related to lateral prefrontal brain regions were weakened in XDP patients and thus induced less cognitive conflict than in controls as reflected by the N2 event-related potential (ERP). Consequently, attentional shifting (P3a ERP) and reorientation processes (RON ERP) were less pronounced in the XDP group. Taken together, these results suggests that striosomal dysfunction is related to predictive coding deficits leading to a better performance in concomitant perceptual decision-making, probably because predictive coding does not interfere with perceptual decision-making processes. These effects may reflect striatal imbalances between the striosomes and the matrix compartment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-017-1435-x | DOI Listing |