Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Obesity is becoming a leading cause of health problems world-wide. Obesity and overweight are associated with the structural and chemical changes in tissues; however, few methods exist that allow for concurrent measurement of these changes. Using Brillouin and Raman microspectroscopy, both the mechanical and chemical differences can be assessed simultaneously. We hypothesized that Brillouin spectroscopy can measure the adipose tissues' stiffness, which increases in obesity. Samples of brown and white adipose tissues obtained from control and diet-induced obese adult rats were analyzed. The results show that both adipose tissues of the obese group exhibit a greater high-frequency longitudinal elastic modulus than the control samples, and that the brown fat is generally stiffer than white adipose. The Raman spectra indicate that the lipids' accumulation in adipose tissue outpaces the fibrosis, and that the high-fat diet has a greater effect on the brown adipose than the white fat. Overall, the powerful combination of Brillouin and Raman microspectroscopies successfully assessed both the mechanical properties and chemical composition of adipose tissue simultaneously for the first time. The results indicate that the adipose tissue experiences an obesity-induced increase in stiffness and lipid content, with the brown adipose tissue undergoing a more pronounced change compared to white adipose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668206PMC
http://dx.doi.org/10.1002/jbio.201600281DOI Listing

Publication Analysis

Top Keywords

adipose tissue
20
white adipose
12
adipose
11
mechanical chemical
8
diet-induced obese
8
brillouin raman
8
samples brown
8
adipose tissues
8
brown adipose
8
tissue
5

Similar Publications

Introduction: Pressure injuries (PIs) in patients with diabetes mellitus (DM) still impacts patients' health and places a heavy burden on healthcare systems. Stage I and stage II PIs are particularly prevalent among individuals with diabetes. Without timely and appropriate interventions, these injuries can progress to more severe stages, requiring prolonged recovery periods.

View Article and Find Full Text PDF

Objective: Vertical sleeve gastrectomy (VSG) promotes significant metabolic improvements, though the underlying molecular mechanisms are not fully understood. Emerging evidence suggests that small extracellular vesicles (sEVs) contribute to metabolic improvements post VSG, such as improved fatty liver disease or adipose tissue function; however, it is unclear how different organ-specific sEVs interact with various metabolic parameters. The objective of this study is to establish the role of organ-specific sEVs in the metabolic improvements post VSG.

View Article and Find Full Text PDF

regulates early postnatal DPP4 preadipocyte pool expansion.

Genes Dev

September 2025

RU Adipocytes and Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;

Adipose tissue is rapidly expanding early in life. Elucidating the queues facilitating this process will advance our understanding of metabolically healthy obesity. Using single-cell RNA sequencing, we identified compositional differences of prewean and adult murine subcutaneous adipose tissue.

View Article and Find Full Text PDF

Human Dental Pulp Stem Cells (hDPSCs) represent a remarkable cell source for tissue engineering and regenerative medicine, offering significant potential for use in personalized medicine and autologous therapies. Decellularized extracellular matrix (ECM)-derived biological scaffolds show excellent properties for supporting cell delivery and growth in both in vitro and in vivo applications. These scaffolds provide essential biochemical cues that regulate cellular functions and offer a more accurate representation of the in vivo environment.

View Article and Find Full Text PDF

Animal models of obesity.

Methods Cell Biol

September 2025

Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile. Electronic address:

Obesity is a multifactorial disease characterized by excessive accumulation of adipose tissue, resulting from an imbalance between energy intake and expenditure. Mouse models have emerged as invaluable tools for elucidating the complex genetic, environmental, and physiological mechanisms driving to obesity. This chapter provides an overview of the methodologies employed to establish and study obesity in mice, highlighting their relevance to human disease.

View Article and Find Full Text PDF