98%
921
2 minutes
20
Adiponectin and leptin are implicated in the initiation and pathomechanism of Alzheimer's disease (AD). The serum concentrations of these adipokines has been extensively studied in AD, however little is known about their receptors in this disease. We developed a novel approach to examine whether the receptors of adiponectin (AdipoR1 and -R2) and/or leptin (LepR) can contribute to AD pathomechanism. To achieve this, we investigated the effect of both genetic and environmental factors associated with AD on the expression of these receptors. We used C57BL/6J (WT) and APP(swe)/Presen(e9d)1 (AD) mice. Both strains were exposed to restraint stress (RS) daily for 6h over different time periods. Then, we measured the mRNA expression of AdipoR1, AdipoR2 and LepR and the level of AdipoR1 and AdipoR2 proteins in the hippocampal and prefrontal cortical areas of each mouse. We detected brain region specific transcriptomic changes of adiponectin receptors induced by APP and PS1 transgenes. Both acute and chronic RS caused significant elevations in AdipoR1 mRNA expression in the hippocampus of WT mice. In the prefrontal cortex, the mRNA expression of AdipoR1 followed a biphasic course. In AD mice, RS did not promote any changes in the expression of AdipoR1 mRNA and AdipoR1 protein levels. AdipoR2 mRNA in AD animals, however, showed a significant increase in the prefrontal cortex during RS. Regarding AdipoR1 and AdipoR2 mRNA and protein expression, relevant changes could be measured during stress exposure in both brain areas. Furthermore, stress exposed groups exhibited little change in LepR mRNA expression. Our findings indicate that carrying the transgenes associated with AD induces modification in the expression of both adiponectin receptors. In the case of a normal genetic background, these receptors also appear to be sensitive to environmental factors, while in a genetically determined AD model less response to stress stimuli could be observed. The results suggest that modification of adipokine receptors could also be considered in the therapeutic approach to AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386987 | PMC |
http://dx.doi.org/10.3389/fnins.2017.00199 | DOI Listing |
Genes Brain Behav
October 2025
Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Major depressive disorder is a prevalent and debilitating psychiatric illness that produces significant disability. Clinical data suggest that the pathophysiology of depression is due, in part, to a dysregulation of inflammation and glutamate levels in the brain. The systemic administration of lipopolysaccharide (LPS) has been shown to induce depressive-like behaviors in mice.
View Article and Find Full Text PDFLiver Int
October 2025
GastroZentrum Hirslanden, Digestive Disease Center, Zürich, Switzerland.
Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.
View Article and Find Full Text PDFAsthma is a chronic respiratory disorder characterized by airway inflammation, hyperresponsiveness, and reversible airflow obstruction. Despite therapeutic strategies, asthma remains inadequately controlled in many patients. Genetic predisposition plays a significant role in asthma pathogenesis, and the Proteinase-Activated Receptor 2 (PAR-2), encoded by the F2RL1 gene, has been associated with asthma.
View Article and Find Full Text PDFIntroduction: Pressure injuries (PIs) in patients with diabetes mellitus (DM) still impacts patients' health and places a heavy burden on healthcare systems. Stage I and stage II PIs are particularly prevalent among individuals with diabetes. Without timely and appropriate interventions, these injuries can progress to more severe stages, requiring prolonged recovery periods.
View Article and Find Full Text PDFKidney Blood Press Res
September 2025
Objective: Cisplatin-induced acute kidney injury (Cis-AKI) is a significant cause of renal damage, characterized by tubular injury, ferroptosis, and oxidative stress. While therapeutic options for Cis-AKI remain limited, identifying novel targets to prevent kidney injury is critical. This study focuses on GALNT14, a gene associated with ferroptosis, and its potential role in mitigating Cis-AKI.
View Article and Find Full Text PDF