Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Histone modifications and histone variants barcode the genome and play major roles in epigenetic regulations. Chromatin immunoprecipitation (ChIP) coupled with next-generation sequencing (NGS) is a well-established method to investigate the landscape of epigenetic marks at a genomic level. Here, we describe procedures for conducting ChIP, subsequent NGS library construction, and data analysis on histone modifications and histone variants in Arabidopsis thaliana. We also describe an optimized nuclear isolation procedure to prepare chromatin for ChIP in the liverwort, Marchantia polymorpha, which is the emerging model plant ideal for evolutionary studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7003-2_7 | DOI Listing |