Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 μmol/mm. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.008571DOI Listing

Publication Analysis

Top Keywords

metal rod
12
terahertz artificial
8
artificial material
8
phase sensitive
8
fluid detection
8
rod array
8
enhanced phase
8
terahertz
6
material based
4
based integrated
4

Similar Publications

Mesoporous metal nanomaterials (MMNs) have gained interest in biomedicine for their unique properties, but their potential is limited by the predominance of spherical shapes and the neglect of morphological effects on biological activity, which hinders the reasonable evaluation of morphology-dependent enzyme-like activities and biological behaviors and its further biomedical applications. It is therefore imperative to find an effective and facile method to design and prepare MMNs with novel, well-defined morphologies. Herein, we fabricated 3 mesoporous platinum nanoenzymes including sphere, rod, and bipyramid topologies [Au@mesoPt sphere, Au@mesoPt rod, and Au@mesoPt bipyramid nanoparticles (NPs), respectively] via a facile atomic layer deposition method using gold NPs (Au NPs) as the templated cores and Pluronic F127 as a structure-directing agent.

View Article and Find Full Text PDF

Precise control of particle size, pore size distribution, and carbon layer spacing under green and low-energy conditions is critical for developing advanced carbon electrodes for supercapacitors and sodium-ion batteries (SIBs). Herein, we proposed a new strategy to prepare an MgAl bimetallic metal-organic framework (MOF) via a pre-ionization strategy, effectively avoiding harsh conditions and using organic solvents in hydrothermal synthesis. By fine-tuning the Mg/Al ratio and pyrolysis conditions, the particle size, pore size distribution and carbon layer spacing of rod porous carbon (RPC) were precisely adjusted.

View Article and Find Full Text PDF

Radical-radical cross-coupling offers an efficient strategy for constructing C-S bonds, yet existing methods typically rely on stoichiometric oxidants or metal catalysts. The lack of sustainable approaches for C(sp)-H sulfenylation at the C9 position of xanthene derivatives limits their functionalization. Herein, we developed an electrochemical method enabling direct C(sp)-H sulfenylation/selenylation of oxa/thia/aza-xanthenes under metal- and chemical-oxidant-free conditions.

View Article and Find Full Text PDF

Nanogranular films obtained by the soft assembly of atomic clusters feature functional properties that are of interest in a variety of fields, ranging from gas sensing to neuromorphic computing, heterogeneous catalysis and the biomedical sector. Bimetallic nanogranular films, combining a post-transition metal (tin) and a catalytic metal (platinum), were produced using supersonic cluster beam deposition. By operating the cluster source with a double-rod cathode or sintered cathode configuration, completely different nanostructures were obtained.

View Article and Find Full Text PDF

One-step synthesis of rutile TiO nanorod clusters for high-rate sodium-ion storage.

Chem Commun (Camb)

September 2025

Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen 361005, China.

Rutile TiO nanorod clusters with a rod width of ∼15 nm are simply synthesized through a one-step hydrothermal method from low-cost raw materials, , CaTiO and BaTiO. Compared with TiO nanoparticles, densely packed TiO nanorod clusters exhibit a pseudocapacitive sodium-ion storage mechanism, achieving superior rate capability, volumetric capacity, and cycling stability.

View Article and Find Full Text PDF