A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Inhalative and intravenous stimulation of soluble guanylate cyclase reduces pulmonary vascular resistance and increases cardiac output in experimental septic shock. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effects of inhaled and intravenous application of a guanylate cyclase stimulator (BAY 41-8543) on pulmonary vascular resistance (PVR) and cardiac output (CO) were investigated in an experimental model of septic shock. Following induction of septic shock, anaesthetized pigs (n=31) were randomly place into two groups receiving different interventions. Animals in the first group received intravenous BAY 41-8543 (0.6 mg), inhalative BAY 41-8543 (6 mg) or a placebo. In the second group, the dosage of BAY 41-8543 was increased two-fold or combined with inhalation of nitric oxide (iNO). Intravenous and inhaled administration of BAY 41-8543 resulted in a significantly (P<0.05) reduced PVR and increased CO compared with the placebo. Increasing the dosage of BAY 41-8543 or combining it with iNO did not further decrease PVR. The results of the present study indicate that BAY 41-8543 effectively reduces PVR and increases CO in septic shock, through inhaled or intravenous routes of administration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377276PMC
http://dx.doi.org/10.3892/etm.2017.4149DOI Listing

Publication Analysis

Top Keywords

bay 41-8543
20
septic shock
12
guanylate cyclase
8
pulmonary vascular
8
vascular resistance
8
cardiac output
8
bay
5
41-8543
5
inhalative intravenous
4
intravenous stimulation
4

Similar Publications