Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Human sphingomyelin synthase 1 (hSMS1) is the last enzyme for sphingomyelin (SM) biosynthesis. It has been discovered that in different human tumor tissues the SM levels are lower compared to normal tissues and the activation of hSMS1, to restore the normal levels of SM, inhibits cell cycle proliferation of cancer cells. Since the importance of SM and other lipid metabolism genes in the malignant transformation, we decided to explore the hSMS1 mechanism of action. Enzymes capable to regulate the formation of lipids are therefore of paramount importance. Here we present a computational study on sphingomyelin synthases hSMS1. The full structure of the enzyme was obtained by means of homology and ab initio techniques. Further molecular dynamics and docking studies permitted to identify putative binding sites and to identify the key residues for binding. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2017.04.004 | DOI Listing |