A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Leaf acclimation to light availability supports rapid growth in tall Picea sitchensis trees. | LitMetric

Leaf acclimation to light availability supports rapid growth in tall Picea sitchensis trees.

Tree Physiol

Department of Forestry and Wildland Resources, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA.

Published: October 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Leaf-level anatomical variation is readily apparent within tall tree crowns, yet the relative importance of water and light availability in controlling this variation remains unclear. Sitka spruce (Picea sitchensis, (Bong.) Carr.) thrives in temperate rainforests of the Pacific Northwest, where it has historically reached heights >100 m, despite rarely living more than 400 years alongside redwoods that are five times older. We examined leaves of trees up to 97 m tall using a combination of transverse sections, longitudinal sections, epidermal imprints and whole-leaf measurements to explore the combined effects of water stress and light availability on leaf development in P. sitchensis. In contrast to the situation in tall Cupressaceae, light availability-not hydraulic limitation-is the primary ecological driver of leaf-level anatomical variation in P. sitchensis. While height-associated decreases in leaf length and mesoporosity are best explained by hydrostatic constraints on leaf elongation, the majority of anatomical traits we measured reflect acclimation to light availability, including increases in leaf width and vascular tissue areas in the brightest parts of the crown. Along with these changes, the appearance of abaxial stomata in the bright upper crown, and the arrangement of mesophyll in uniseriate, transverse plates-with radially arranged apoplastic pathways leading directly to stomata before bridging them with a V-shaped cell-may enhance gas exchange and hydraulic conductivity. This suite of leaf traits suggests an adaptive strategy that maximizes photosynthesis at the expense of water-stress tolerance. Anatomical investigations spanning the height gradient in tall tree crowns build our understanding of mechanisms underlying among-species variation in growth rates, life spans, and potential responses to climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpx027DOI Listing

Publication Analysis

Top Keywords

light availability
16
acclimation light
8
picea sitchensis
8
leaf-level anatomical
8
anatomical variation
8
tall tree
8
tree crowns
8
leaf
6
light
5
tall
5

Similar Publications