98%
921
2 minutes
20
Background: People with chronic tetraplegia, due to high-cervical spinal cord injury, can regain limb movements through coordinated electrical stimulation of peripheral muscles and nerves, known as functional electrical stimulation (FES). Users typically command FES systems through other preserved, but unrelated and limited in number, volitional movements (eg, facial muscle activity, head movements, shoulder shrugs). We report the findings of an individual with traumatic high-cervical spinal cord injury who coordinated reaching and grasping movements using his own paralysed arm and hand, reanimated through implanted FES, and commanded using his own cortical signals through an intracortical brain-computer interface (iBCI).
Methods: We recruited a participant into the BrainGate2 clinical trial, an ongoing study that obtains safety information regarding an intracortical neural interface device, and investigates the feasibility of people with tetraplegia controlling assistive devices using their cortical signals. Surgical procedures were performed at University Hospitals Cleveland Medical Center (Cleveland, OH, USA). Study procedures and data analyses were performed at Case Western Reserve University (Cleveland, OH, USA) and the US Department of Veterans Affairs, Louis Stokes Cleveland Veterans Affairs Medical Center (Cleveland, OH, USA). The study participant was a 53-year-old man with a spinal cord injury (cervical level 4, American Spinal Injury Association Impairment Scale category A). He received two intracortical microelectrode arrays in the hand area of his motor cortex, and 4 months and 9 months later received a total of 36 implanted percutaneous electrodes in his right upper and lower arm to electrically stimulate his hand, elbow, and shoulder muscles. The participant used a motorised mobile arm support for gravitational assistance and to provide humeral abduction and adduction under cortical control. We assessed the participant's ability to cortically command his paralysed arm to perform simple single-joint arm and hand movements and functionally meaningful multi-joint movements. We compared iBCI control of his paralysed arm with that of a virtual three-dimensional arm. This study is registered with ClinicalTrials.gov, number NCT00912041.
Findings: The intracortical implant occurred on Dec 1, 2014, and we are continuing to study the participant. The last session included in this report was Nov 7, 2016. The point-to-point target acquisition sessions began on Oct 8, 2015 (311 days after implant). The participant successfully cortically commanded single-joint and coordinated multi-joint arm movements for point-to-point target acquisitions (80-100% accuracy), using first a virtual arm and second his own arm animated by FES. Using his paralysed arm, the participant volitionally performed self-paced reaches to drink a mug of coffee (successfully completing 11 of 12 attempts within a single session 463 days after implant) and feed himself (717 days after implant).
Interpretation: To our knowledge, this is the first report of a combined implanted FES+iBCI neuroprosthesis for restoring both reaching and grasping movements to people with chronic tetraplegia due to spinal cord injury, and represents a major advance, with a clear translational path, for clinically viable neuroprostheses for restoration of reaching and grasping after paralysis.
Funding: National Institutes of Health, Department of Veterans Affairs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516547 | PMC |
http://dx.doi.org/10.1016/S0140-6736(17)30601-3 | DOI Listing |
Clin Orthop Relat Res
September 2025
Leni & Peter W. May Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Safe and Green Mining of Metal Mines with Cemented Paste Backfill, National Mine Safety Administration, University of Science and Technology Beijing, Beijing 100083, Chi
Cemented paste backfill has made outstanding contributions to the large-scale consumption of phosphogypsum (PG), but poor water resistance significantly weakens the mechanical strength, promotes the leaching of total soluble phosphate (TP) and fluoride ions (F), and reduces its attractiveness in mine engineering. This research synthesized a curing agent (CA) using sodium methylsilicate, sodium silicate, and polyaluminum chloride (PAC). PG produced from Deyang Haohua Qingping Phosphate Mine Co.
View Article and Find Full Text PDFJ Opioid Manag
September 2025
Larner College of Medicine, Burlington, Vermont. ORCID: https://orcid.org/0000-0001-5355-5999.
Objective: The effects of opioid use disorder (OUD) are devastating and wide-ranging. Although the information in the >43,000 manuscripts on OUD are searchable, gaining a comprehensive grasp of this information is out of reach to most persons. We present a pilot study to use published data on OUD, repurpose it for rapid comprehension and distribution to the world.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
Hefei University of Technology, School of Mechanical Engineering, Hefei 230009, China.
In unstructured environments, robots face challenges in efficiently and accurately grasping irregular, fragile objects. To address this, this paper introduces a soft robotic hand tailored for such settings and enhances You Only Look Once v5s (YOLOv5s), a lightweight detection algorithm, to achieve efficient grasping. A rapid pneumatic network-based soft finger structure, broadly applicable to various irregularly placed objects, is designed, with a mathematical model linking the bending angle of the fingers to input gas pressure, validated through simulations.
View Article and Find Full Text PDFGait Posture
September 2025
School of Health Sciences, University of East Anglia, UK. Electronic address:
Background: International consensus recommends use of kinematic metrics of movement during standardized functional tasks after stroke to ascertain whether rehabilitation is driving behavioral restitution or compensation. Quality of human movement can be characterized by fluency metrics including smoothness and hesitation. Before using these metrics in stroke rehabilitation it is important to find whether 'reference values', from healthy adults, are repeatable.
View Article and Find Full Text PDF