98%
921
2 minutes
20
Background: Intercondylar notch impingement is detrimental to the anterior cruciate ligament (ACL). Notchplasty is a preventative remodeling procedure performed on the intercondylar notch during ACL reconstruction (ACLR). This study investigates how ACL graft geometry and both tibial and femoral insertion site location may affect ACL-intercondylar notch interactions post ACLR. A range of ACL graft sizes are reported during ACLR, from six millimeters to 11mm in diameter. Variability of three millimeters in ACL insertion site location is reported during ACLR. This study aims to determine the post-operative effects of minor variations in graft size and insertion location on intercondylar notch impingement.
Methods: Several 3D finite element knee joint models were constructed using three ACL graft sizes and polar arrays of tibial and femoral insertion locations. Each model was subjected to flexion, tibial external rotation, and valgus motion. Impingement force and contact area between the ACL and intercondylar notch compared well with experimental cadaver data from literature.
Results: A three millimeter anterior-lateral tibial insertion site shift of the maximum size ACL increased impingement force by 242.9%. A three millimeter anterior-proximal femoral insertion site shift of the maximum size ACL increased impingement by 346.2%. Simulated notchplasty of five millimeters eliminated all impingement for the simulation with the greatest impingement. For the kinematics applied, small differences in graft size and insertion site location led to large increases in impingement force and contact area.
Conclusions: Minor surgical variations may increase ACL impingement. The results indicate that notchplasty reduces impingement during ACLR. Notchplasty may help to improve ACLR success rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.knee.2017.02.010 | DOI Listing |
J Am Chem Soc
September 2025
State Key Laboratory of Antiviral Drugs, Tianjian Laboratory of Advanced Biomedical Sciences, Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
The C-H functionalization represents a universal and important method for constructing new C-C bonds by carrying out reactions directly on inert C-H bonds. The major challenges are to control the site-selectivity and chemoselectivity because most complex organic compounds have many similar C-H bonds or different functional groups, such as a C═C bond or O-H bond. Here, we develop a versatile copper cluster (CuNC) with high stability and dynamic catalytic sites.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
Background: Diabetic foot ulcers (DFU) are a prevalent complication of diabetes, leading to significant morbidity, mortality, and amputation rates. Chronic non-healing DFU often result from peripheral neuropathy, microvascular issues, and infection, with poor blood and oxygen supply being critical factors in delayed healing. The development of new treatments to promote blood supply and accelerate ulcer healing is a significant area of research for DFU management.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.
View Article and Find Full Text PDFACS Synth Biol
September 2025
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation.
African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.
View Article and Find Full Text PDFMinerva Dent Oral Sci
September 2025
Division of Implant Prosthodontics, Department of Surgical Sciences, University of Genoa, Genoa, Italy.
Background: The purpose of the study is to evaluate the use of a magnetodynamic instrument (Magnetic Mallet, Metaergonomica, Turbigo, Milan, Italy) to perform a horizontal bone expansion in edentulous sites that need to be rehabilitated with a dental implant.
Methods: A sample of 15 patients, 11 men and 4 women, age between 39 and 78 years, was analyzed. A total of 18 conical-shaped implants with a diameter of 3.