Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the coastal ocean, temporal fluctuations in pH vary dramatically across biogeographic ranges. How such spatial differences in pH variability regimes might shape ocean acidification resistance in marine species remains unknown. We assessed the pH sensitivity of the sea urchin in the context of ocean pH variability. Using unique male-female pairs, originating from three sites with similar mean pH but different variability and frequency of low pH (pH ≤ 7.8) exposures, fertilization was tested across a range of pH (pH 7.61-8.03) and sperm concentrations. High fertilization success was maintained at low pH via a slight right shift in the fertilization function across sperm concentration. This pH effect differed by site. Urchins from the site with the narrowest pH variability regime exhibited the greatest pH sensitivity. At this site, mechanistic fertilization dynamics models support a decrease in sperm-egg interaction rate with decreasing pH. The site differences in pH sensitivity build upon recent evidence of local pH adaptation in and highlight the need to incorporate environmental variability in the study of global change biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355180PMC
http://dx.doi.org/10.1002/ece3.2776DOI Listing

Publication Analysis

Top Keywords

sensitivity sea
8
sea urchin
8
fertilization
5
variability
5
sensitivity
4
urchin fertilization
4
fertilization varies
4
varies natural
4
natural mosaic
4
mosaic coastal
4

Similar Publications

The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.

View Article and Find Full Text PDF

Electrophysiological responses of the clam (Ruditapes decussatus) osphradium to amino acids and alarm cues.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

September 2025

Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, 8005- 139, Portugal.

Chemical sensing of the surrounding environment is crucial for many aspects of bivalve biology, such as food detection and predator avoidance. Aquatic organisms strongly depend on chemosensory systems; however, little is known about chemosensory systems in bivalves. To understand how the carpet shell clam (Ruditapes decussatus) senses its surrounding chemical environment, we used an electrophysiological technique - the electro-osphradiogram - to assess the sensitivity of the osphradium to different putative odorants (amino acids, bile acids) and odours (predator-released cues and signals from con- and heterospecific bivalves).

View Article and Find Full Text PDF

Evaluation zooplankton community and energy transfer efficiency: A case in the coastal waters of Shandong, China.

Mar Environ Res

September 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Zooplankton are sensitive indicators of environmental changes and crucial components of marine food webs, facilitating energy transfer between primary producers and higher trophic levels. This study used ZooScan image analysis to investigate variations in zooplankton abundance and biovolume in Shandong coastal waters during spring (May 2022), summer (August 2022), and winter (December 2022 and February 2023). Functional indices such as taxonomic diversity, the normalized biomass size spectrum (NBSS), size diversity, and mean body size were calculated to describe the seasonal dynamics of energy transfer efficiency in zooplankton.

View Article and Find Full Text PDF

Dense aggregations of species in the family Pinnidae give soft substrata a specific characterization. They may influence the biological and physical properties of the surrounding sediments. Bottom-trawl samplings performed in the Sea of Marmara revealed populations of a large pinnid species, particularly at depths of 40-45 m in soft substrata.

View Article and Find Full Text PDF

Long-term variations of global antimony (Sb) deposition fluxes and their responses to China's clean air actions.

J Hazard Mater

September 2025

Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China. Electronic address:

As a priority pollutant designated by the U.S. Environmental Protection Agency (USEPA), antimony (Sb) poses significant risks to global human health.

View Article and Find Full Text PDF