98%
921
2 minutes
20
In the coastal ocean, temporal fluctuations in pH vary dramatically across biogeographic ranges. How such spatial differences in pH variability regimes might shape ocean acidification resistance in marine species remains unknown. We assessed the pH sensitivity of the sea urchin in the context of ocean pH variability. Using unique male-female pairs, originating from three sites with similar mean pH but different variability and frequency of low pH (pH ≤ 7.8) exposures, fertilization was tested across a range of pH (pH 7.61-8.03) and sperm concentrations. High fertilization success was maintained at low pH via a slight right shift in the fertilization function across sperm concentration. This pH effect differed by site. Urchins from the site with the narrowest pH variability regime exhibited the greatest pH sensitivity. At this site, mechanistic fertilization dynamics models support a decrease in sperm-egg interaction rate with decreasing pH. The site differences in pH sensitivity build upon recent evidence of local pH adaptation in and highlight the need to incorporate environmental variability in the study of global change biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355180 | PMC |
http://dx.doi.org/10.1002/ece3.2776 | DOI Listing |
Mar Environ Res
September 2025
Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan.
The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
September 2025
Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, 8005- 139, Portugal.
Chemical sensing of the surrounding environment is crucial for many aspects of bivalve biology, such as food detection and predator avoidance. Aquatic organisms strongly depend on chemosensory systems; however, little is known about chemosensory systems in bivalves. To understand how the carpet shell clam (Ruditapes decussatus) senses its surrounding chemical environment, we used an electrophysiological technique - the electro-osphradiogram - to assess the sensitivity of the osphradium to different putative odorants (amino acids, bile acids) and odours (predator-released cues and signals from con- and heterospecific bivalves).
View Article and Find Full Text PDFMar Environ Res
September 2025
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
Zooplankton are sensitive indicators of environmental changes and crucial components of marine food webs, facilitating energy transfer between primary producers and higher trophic levels. This study used ZooScan image analysis to investigate variations in zooplankton abundance and biovolume in Shandong coastal waters during spring (May 2022), summer (August 2022), and winter (December 2022 and February 2023). Functional indices such as taxonomic diversity, the normalized biomass size spectrum (NBSS), size diversity, and mean body size were calculated to describe the seasonal dynamics of energy transfer efficiency in zooplankton.
View Article and Find Full Text PDFBiology (Basel)
July 2025
The Scientific and Technological Research Council of Türkiye (TÜBİTAK) Marmara Research Center, Gebze, Kocaeli 41470, Türkiye.
Dense aggregations of species in the family Pinnidae give soft substrata a specific characterization. They may influence the biological and physical properties of the surrounding sediments. Bottom-trawl samplings performed in the Sea of Marmara revealed populations of a large pinnid species, particularly at depths of 40-45 m in soft substrata.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China. Electronic address:
As a priority pollutant designated by the U.S. Environmental Protection Agency (USEPA), antimony (Sb) poses significant risks to global human health.
View Article and Find Full Text PDF