A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Immanent conditions determine imminent collapses: nutrient regimes define the resilience of macroalgal communities. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Predicting where state-changing thresholds lie can be inherently complex in ecosystems characterized by nonlinear dynamics. Unpacking the mechanisms underlying these transitions can help considerably reduce this unpredictability. We used empirical observations, field and laboratory experiments, and mathematical models to examine how differences in nutrient regimes mediate the capacity of macrophyte communities to sustain sea urchin grazing. In relatively nutrient-rich conditions, macrophyte systems were more resilient to grazing, shifting to barrens beyond 1 800 g m (urchin biomass), more than twice the threshold of nutrient-poor conditions. The mechanisms driving these differences are linked to how nutrients mediate urchin foraging and algal growth: controlled experiments showed that low-nutrient regimes trigger compensatory feeding and reduce plant growth, mechanisms supported by our consumer-resource model. These mechanisms act together to halve macrophyte community resilience. Our study demonstrates that by mediating the underlying drivers, inherent conditions can strongly influence the buffer capacity of nonlinear systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378086PMC
http://dx.doi.org/10.1098/rspb.2016.2814DOI Listing

Publication Analysis

Top Keywords

nutrient regimes
8
immanent conditions
4
conditions determine
4
determine imminent
4
imminent collapses
4
collapses nutrient
4
regimes define
4
define resilience
4
resilience macroalgal
4
macroalgal communities
4

Similar Publications