Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er -doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al or P ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er -doped alumina nanoparticles (NPs), as precursor of Er ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359192PMC
http://dx.doi.org/10.1186/s11671-017-1947-6DOI Listing

Publication Analysis

Top Keywords

glass modifiers
12
material nanostructuring
8
glass composition
8
glass
6
optical
5
benefit rare-earth
4
rare-earth "smart
4
"smart doping"
4
doping" material
4
nanostructuring generation
4

Similar Publications

Directed message passing neural networks enhanced graph convolutional learning for accurate polymer density prediction.

J Chem Phys

September 2025

National Synchrotron Radiation Laboratory, State Key Laboratory of Advanced Glass Materials, Anhui Provincial Engineering Research Center for Advanced Functional Polymer Films, University of Science and Technology of China, Hefei, Anhui 230029, China.

Polymer density is a critical factor influencing material performance and industrial applications, and it can be tailored by modifying the chemical structure of repeating units. Traditional polymer density characterization methods rely heavily on domain expertise; however, the vast chemical space comprising over one million potential polymer structures makes conventional experimental screening inefficient and costly. In this study, we proposed a machine learning framework for polymer density prediction, rigorously evaluating four models: neural networks (NNs), random forest (RF), XGBoost, and graph convolutional neural networks (GCNNs).

View Article and Find Full Text PDF

A Commentary On: Mohamed M H, Abouauf E A, Mosallam R S. Clinical performance of class II MOD fiber reinforced resin composite restorations: an 18-month randomized controlled clinical trial. BMC Oral Health 2025;25: 159.

View Article and Find Full Text PDF

Strain promoted click labeling of oligonucleotides on solid-phase support.

Methods

September 2025

Charles University, Faculty of Pharmacy in Hradec Kralove, Ak. Heyrovskeho 1203, Hradec Kralove 500 03, Czech Republic. Electronic address:

Chemically modified oligonucleotides (ONs) are essential tools in molecular biology, diagnostics, and therapeutics. Strain-promoted azide-alkyne cycloaddition (SPAAC) offers an efficient and bioorthogonal method for ON functionalization. While SPAAC reactions on solid-phase support provide distinct advantages, particularly for the incorporation of lipophilic labels, factors influencing their efficiency remain poorly characterized.

View Article and Find Full Text PDF

Selective and rapid detection of ammonia (NH) gas over a wide concentration range is essential for applications such as early diagnosis of renal diseases and environmental safety. NH in exhaled breath serves as a biomarker of kidney function, and its precise detection is vital for early renal disease diagnosis. This work reports a SnS/PANI heterojunction nanocomposite (SPA) sensor synthesized a hydrothermal route followed by oxidative polymerization.

View Article and Find Full Text PDF

Objective: To assess the cost-effectiveness of silver diamine fluoride (SDF) relative to sodium fluoride (NaF) and traditional resin-modified glass ionomer cements (RMGIC) restorations for the management of root caries in older adults aged 60 and above.

Methods: A Markov model design was chosen and two models were constructed: 1) Clinic-based model - with access to dental facility that allows for placement of traditional restorations, 2) Community-based model - without access to dental facility due to mobility, lack of executive function, or financial barriers. Modelling was done over a 10-year time horizon with a cycle length of one year.

View Article and Find Full Text PDF