Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Barasertib (AZD1152), a highly potent and selective aurora kinase B inhibitor, gave promising clinical activity in elderly acute myeloid leukemia (AML) patients. However, clinical utility was limited by the requirement for a 7-day infusion. Here we assessed the potential of a nanoparticle formulation of the selective Aurora kinase B inhibitor AZD2811 (formerly known as AZD1152-hQPA) in preclinical models of AML. When administered to HL-60 tumor xenografts at a single dose between 25 and 98.7 mg/kg, AZD2811 nanoparticle treatment delivered profound inhibition of tumor growth, exceeding the activity of AZD1152. The improved antitumor activity was associated with increased phospho-histone H3 inhibition, polyploidy, and tumor cell apoptosis. Moreover, AZD2811 nanoparticles increased antitumor activity when combined with cytosine arabinoside. By modifying dose of AZD2811 nanoparticle, therapeutic benefit in a range of preclinical models was further optimized. At high-dose, antitumor activity was seen in a range of models including the MOLM-13 disseminated model. At these higher doses, a transient reduction in bone marrow cellularity was observed demonstrating the potential for the formulation to target residual disease in the bone marrow, a key consideration when treating AML. Collectively, these data establish that AZD2811 nanoparticles have activity in preclinical models of AML. Targeting Aurora B kinase with AZD2811 nanoparticles is a novel approach to deliver a cell-cycle inhibitor in AML, and have potential to improve on the clinical activity seen with cell-cycle agents in this disease. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-16-0580DOI Listing

Publication Analysis

Top Keywords

azd2811 nanoparticles
16
aurora kinase
12
preclinical models
12
antitumor activity
12
acute myeloid
8
myeloid leukemia
8
selective aurora
8
kinase inhibitor
8
clinical activity
8
models aml
8

Similar Publications

High-throughput screening identifies Aurora kinase B as a critical therapeutic target for Merkel cell carcinoma.

Nat Commun

February 2025

Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.

Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer. Most MCCs contain Merkel cell polyomavirus (virus-positive MCC; VP-MCC), and the remaining are virus-negative (VN-MCC). Immune checkpoint inhibitors are the first-line treatment for metastatic MCC, but durable responses are achieved in less than 50% of patients.

View Article and Find Full Text PDF

A new 3.2 mm H-F-X magic angle spinning dynamic nuclear polarization NMR (MAS DNP-NMR) probe was developed with a unique coil design with separate radiofrequency channels for H excitation and C or F detection to enable acquisition of H-F cross-polarization (CP) MAS experiments, direct-detected F spectra with proton decoupling, and acquisition on C with simultaneous double decoupling on the H and 19F channels as well as H-F-C double-CP experiments under low temperature MAS DNP conditions. We use these sequences to study AZD2811, which is an active pharmaceutical ingredient (API), in its pure dry state as well as in its corresponding drug delivery formulation consisting of drug-loaded polymeric nanoparticles (PNPs).

View Article and Find Full Text PDF

Background: AZD2811 is a potent, selective Aurora kinase B inhibitor. We report the dose-escalation phase of a first-in-human study assessing nanoparticle-encapsulated AZD2811 in advanced solid tumours.

Methods: AZD2811 was administered in 12 dose-escalation cohorts (2-h intravenous infusion; 15‒600 mg; 21-/28-day cycles) with granulocyte colony-stimulating factor (G-CSF) at higher doses.

View Article and Find Full Text PDF

Selecting Counterions to Improve Ionized Hydrophilic Drug Encapsulation in Polymeric Nanoparticles.

Mol Pharm

February 2023

Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, CambridgeCB21 6GH, U.K.

Hydrophobic ion pairing (HIP) can successfully increase the drug loading and control the release kinetics of ionizable hydrophilic drugs, addressing challenges that prevent these molecules from reaching the clinic. Nevertheless, polymeric nanoparticle (PNP) formulation development requires trial-and-error experimentation to meet the target product profile, which is laborious and costly. Herein, we design a preformulation framework (solid-state screening, computational approach, and solubility in PNP-forming emulsion) to understand counterion-drug-polymer interactions and accelerate the PNP formulation development for HIP systems.

View Article and Find Full Text PDF

Drug-induced cytopenias are a prevalent and significant issue that worsens clinical outcomes and hinders the effective treatment of cancer. While reductions in blood cell numbers are classically associated with traditional cytotoxic chemotherapies, they also occur with newer targeted small molecules and the factors that determine the hematotoxicity profiles of oncologic drugs are not fully understood. Here, we explore why some Aurora kinase inhibitors cause preferential neutropenia.

View Article and Find Full Text PDF