Arabidopsis MAP3K16 and Other Salt-Inducible MAP3Ks Regulate ABA Response Redundantly.

Mol Cells

Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea.

Published: March 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the Arabidopsis genome, approximately 80 MAP3Ks (mitogen-activated protein kinase kinase kinases) have been identified. However, only a few of them have been characterized, and the functions of most MAP3Ks are largely unknown. In this paper, we report the function of MAP3K16 and several other MAP3Ks, MAP3K14/15/17/18, whose expression is salt-inducible. We prepared overexpression (OX) lines and analyzed their phenotypes. The result showed that the transgenic plants were ABA-insensitive during seed germination and cotyledon greening stage but their root growth was ABA-hypersensitive. The OX lines were more susceptible to water-deficit condition at later growth stage in soil. A knockout (KO) line, on the other hand, exhibited opposite phenotypes. In similar transgenic analyses, we found that OX and KO lines displayed similar phenotypes to those of MA3K16, suggesting the functional redundancy among them. MAP3K16 possesses kinase activity, and we carried out two-hybrid analyses to identify MAP3K16 substrates. Our results indicate that MAP3K16 interacts with MKK3 and the negative regulator of ABA response, ABR1, in yeast. Furthermore, MAP3K16 recombinant protein could phosphorylate MKK3 and ABR1, suggesting that they might be MAP3K16 substrates. Collectively, our results demonstrate that MAP3K16 and MAP3K14/15/17/18 are involved in ABA response, playing negative or positive roles depending on developmental stage and that MAP3K16 may function MKK3 and ABR1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386961PMC
http://dx.doi.org/10.14348/molcells.2017.0002DOI Listing

Publication Analysis

Top Keywords

aba response
12
map3k16
8
map3k16 substrates
8
mkk3 abr1
8
arabidopsis map3k16
4
map3k16 salt-inducible
4
map3ks
4
salt-inducible map3ks
4
map3ks regulate
4
regulate aba
4

Similar Publications

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Seed coat-derived ABA regulates seed dormancy of by modulating ABA and GA balance.

Front Plant Sci

September 2025

College of Life Sciences, Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China of Ministry of Education, Shaanxi Normal University, Xi'an, China.

Plant seeds have evolved diverse dormancy types and regulatory mechanisms to adapt to environmental conditions and seasonal changes. As a commonly used rootstock for cultivated pears, faces challenges in seedling production and large-scale cultivation due to limited understanding of seed dormancy mechanisms. In this study, we report that seeds exhibit non-deep physiological dormancy, with seed coats playing a pivotal regulatory role.

View Article and Find Full Text PDF

In recent years, public concerns about applied behavior analysis (ABA) have intensified. This article argues that foundational principles of ABA require behavior analysts to take seriously these concerns and actively work to improve our practices. We provide an overview of ongoing reform efforts and examine how these efforts have led to the emergence of distinct brands within the field.

View Article and Find Full Text PDF

Exogenous Melatonin Regulates Hormone Signalling and Photosynthesis-Related Genes to Enhance Brassica napus. Yield: A Transcriptomic Perspective.

J Pineal Res

September 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.

View Article and Find Full Text PDF