Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Intracortical microstimulation is one of the most common techniques to causally interfere with neuronal processing, but neuronal recordings spanning the whole cortical depth during stimulation are exceptionally rare.
Objective/hypothesis: Here we combined layer-specific intracortical microstimulation with extracellular recordings on the same shank of a linear multi-electrode array to study the effects of electrical stimulation in different cortical depths on intracortical processing in the auditory cortex in vivo.
Methods: Population responses (local field potentials and multi-unit activity) were recorded from the auditory cortex of 8 guinea pigs under ketamine/xylazine anesthesia while single current pulses (charge-balanced, biphasic, square-wave, 0.1-45 μA, 200 μs/phase) were delivered in different cortical depths.
Results: The cortical responses differed with a change in the stimulation parameters, with significant factors being the stimulating current (p < 0.0001), stimulation depth (p = 0.03) and the recording depth (p = 0.002) considering the local field potential amplitude. A cross-correlation analysis between responses evoked by intracortical microstimulation and physiological auditory stimuli revealed the closest match when stimulating the middle granular layer (p < 0.05).
Conclusion: Intracortical response profiles to low-current intracortical microstimulation were layer specific. The most natural cortical response was achieved by stimulation in the thalamo-recipient layer. These findings contribute to a basis for designing cortical neuroprosthetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brs.2017.02.009 | DOI Listing |