98%
921
2 minutes
20
The Flavivirus genus includes a large number of medically relevant pathogens that cycle between humans and arthropods. This host alternation imposes a selective pressure on the viral population. Here, we found that dengue virus, the most important viral human pathogen transmitted by insects, evolved a mechanism to differentially regulate the production of viral non-coding RNAs in mosquitos and humans, with a significant impact on viral fitness in each host. Flavivirus infections accumulate non-coding RNAs derived from the viral 3'UTRs (known as sfRNAs), relevant in viral pathogenesis and immune evasion. We found that dengue virus host adaptation leads to the accumulation of different species of sfRNAs in vertebrate and invertebrate cells. This process does not depend on differences in the host machinery; but it was found to be dependent on the selection of specific mutations in the viral 3'UTR. Dissecting the viral population and studying phenotypes of cloned variants, the molecular determinants for the switch in the sfRNA pattern during host change were mapped to a single RNA structure. Point mutations selected in mosquito cells were sufficient to change the pattern of sfRNAs, induce higher type I interferon responses and reduce viral fitness in human cells, explaining the rapid clearance of certain viral variants after host change. In addition, using epidemic and pre-epidemic Zika viruses, similar patterns of sfRNAs were observed in mosquito and human infected cells, but they were different from those observed during dengue virus infections, indicating that distinct selective pressures act on the 3'UTR of these closely related viruses. In summary, we present a novel mechanism by which dengue virus evolved an RNA structure that is under strong selective pressure in the two hosts, as regulator of non-coding RNA accumulation and viral fitness. This work provides new ideas about the impact of host adaptation on the variability and evolution of flavivirus 3'UTRs with possible implications in virulence and viral transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354447 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1006265 | DOI Listing |
Arboviral infections, particularly Dengue and Zika, continue to rise at an alarming rate, with both viruses declared global health emergencies in 2024 and 2016, respectively. The NS5 RNA-dependent RNA polymerase (RdRp) of dengue virus (DENV) and Zika virus (ZIKV) is highly conserved, making nucleoside-based RdRp inhibitors a promising strategy for antiviral development. While nucleoside analogs have shown strong clinical potential, challenges such as cell permeability, the efficiency of triphosphate conversion, degradation, and mitochondrial toxicity remain.
View Article and Find Full Text PDFParasite
September 2025
Parasitology Department, São Paulo University, 1374 Av. Prof. Lineu Prestes, São Paulo, State of São Paulo 05508-000, Brazil.
Understanding why Diptera, such as mosquitoes and sand flies, feed on humans is crucial in defining them as vectors of diseases such as malaria, dengue fever, Zika virus, and leishmaniasis. Determining their attraction to humans (anthropophily) helps in assessing the risk of disease transmission, designing effective vector control strategies, and monitoring the effectiveness of existing control measures. An important question is whether they are specifically attracted to humans in preference to other mammals or whether there is something else at play.
View Article and Find Full Text PDFPLoS One
September 2025
Instituto de Física, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
Dengue fever remains a major public health concern, requiring continuous efforts to mitigate its impact. This study investigates the influence of key temperature-dependent parameters on dengue transmission dynamics in Foz do Iguaçu, a tri-border municipality in southern Brazil, using a mathematical model based on a system of ordinary differential equations. The fitted model aligns well with observed data.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia.
Background: Dengue and chikungunya are arboviral diseases with overlapping clinical characteristics. Dengue virus (DENV) is endemic in Colombia, and in 2014/2015, the chikungunya virus (CHIKV) caused an epidemic that resulted in over 350,000 cases. Since then, both viruses have been actively co-circulating.
View Article and Find Full Text PDFNAR Mol Med
April 2025
Tumor Vaccine and Biotechnology Branch, Division of Cellular Therapy 2, Office of Cellular Therapy and Human Tissue, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States.
Changes in global climate have contributed to increased tick and mosquito (vector) populations and subsequent vector-borne flavivirus infections in humans. This increase poses a threat to the safety of human-derived biologics such as cell and gene therapy. We conducted time-course transcriptomic and protein analyses to uncover host molecular factors driving the virulence of Zika virus (ZIKV) and Dengue virus (DENV) in relation to host defense mechanisms, as these viruses have caused recent flavivirus outbreaks.
View Article and Find Full Text PDF