Electrostatic correlations and the polyelectrolyte self energy.

J Chem Phys

Division of Chemistry andChemical Engineering, California Institute of TechnologyPasadena, Pasadena, California 91125,USA.

Published: February 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We address the effects of chain connectivity on electrostaticfluctuations in polyelectrolyte solutions using a field-theoretic, renormalizedGaussian fluctuation (RGF) theory. As in simple electrolyte solutions [Z.-G. Wang,Phys. Rev. E 81, 021501 (2010)], the RGF provides a unified theory forelectrostatic fluctuations, accounting for both dielectric and charge correlationeffects in terms of the self-energy. Unlike simple ions, the polyelectrolyte self energydepends intimately on the chain conformation, and our theory naturally provides aself-consistent determination of the response of intramolecular chain structure topolyelectrolyte and salt concentrations. The effects of the chain-conformation on theself-energy and thermodynamics are especially pronounced for flexiblepolyelectrolytes at low polymer and salt concentrations, where application of thewrong chain structure can lead to a drastic misestimation of the electrostaticcorrelations. By capturing the expected scaling behavior of chain size from dilute tosemi-dilute regimes, our theory provides improved estimates of the self energy at lowpolymer concentrations and correctly predicts the eventual N-independenceof the critical temperature and concentration of salt-free solutions of flexiblepolyelectrolytes. We show that the self energy can be interpreted in terms of aninfinite-dilution energy μ and a finite concentrationcorrelation correction μ which tends to cancel out the formerwith increasing concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4975777DOI Listing

Publication Analysis

Top Keywords

chain structure
8
salt concentrations
8
chain
5
electrostatic correlations
4
correlations polyelectrolyte
4
energy
4
polyelectrolyte energy
4
energy address
4
address effects
4
effects chain
4

Similar Publications

Mechanistic analysis of lignocellulosic biomass saccharification by the filamentous fungus Talaromyces cellulolyticus.

Biosci Biotechnol Biochem

September 2025

Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.

Lignocellulosic biomass is a carbon-neutral resource crucial to advancing a bio-based economy. The filamentous fungus Talaromyces cellulolyticus demonstrates superior biomass saccharification efficiency compared to conventional enzyme-producing fungi, making it a promising host for enzymatic biomass conversion. To enable molecular studies, we developed a robust genetic transformation system for T.

View Article and Find Full Text PDF

Distinctive polymer brushes (PBs) play a crucial role in providing a nonpreferential (neutral) surface for vertical orientation of block copolymers (BCPs). This bottom-up approach effectively aligns the formation of vertical lamellar and cylinder lattice structures from the BCP, which is crucial for nanopatterning and other applications. In conventional BCP self-assembly techniques, random copolymer brushes are commonly employed to achieve substrate neutrality.

View Article and Find Full Text PDF

Background: Light chain multiple myeloma (LCMM) is a malignant hematological disease characterized by bone marrow infiltration by tumor plasma cells and the secretion of monoclonal free light chains (κ or λ). It is often di-agnosed through hypogammaglobulinemia detected by serum protein electrophoresis, followed by immunotyping showing a monoclonal band in free light chains. However, the structure of monoclonal light chains can sometimes complicate laboratory findings.

View Article and Find Full Text PDF

Ultrafast Al⁺ Conduction through Cooperative Bonding in Disordered Polycarbonate-Polyether Electrolytes.

Small Methods

September 2025

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.

As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.

View Article and Find Full Text PDF

High-Performance Air-Stable Polymer Monolayer Transistors for Monolithic 3D CMOS logics.

Adv Mater

September 2025

State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.

The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.

View Article and Find Full Text PDF