A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A method for characterizing phenotypic changes in highly variable cell populations and its application to high content screening of Arabidopsis thaliana protoplasts. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quantitative image analysis procedures are necessary for the automated discovery of effects of drug treatment in large collections of fluorescent micrographs. When compared to their mammalian counterparts, the effects of drug conditions on protein localization in plant species are poorly understood and underexplored. To investigate this relationship, we generated a large collection of images of single plant cells after various drug treatments. For this, protoplasts were isolated from six transgenic lines of A. thaliana expressing fluorescently tagged proteins. Eight drugs at three concentrations were applied to protoplast cultures followed by automated image acquisition. For image analysis, we developed a cell segmentation protocol for detecting drug effects using a Hough transform-based region of interest detector and a novel cross-channel texture feature descriptor. In order to determine treatment effects, we summarized differences between treated and untreated experiments with an L Cramér-von Mises statistic. The distribution of these statistics across all pairs of treated and untreated replicates was compared to the variation within control replicates to determine the statistical significance of observed effects. Using this pipeline, we report the dose dependent drug effects in the first high-content Arabidopsis thaliana drug screen of its kind. These results can function as a baseline for comparison to other protein organization modeling approaches in plant cells. © 2017 International Society for Advancement of Cytometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395329PMC
http://dx.doi.org/10.1002/cyto.a.23067DOI Listing

Publication Analysis

Top Keywords

arabidopsis thaliana
8
image analysis
8
effects drug
8
plant cells
8
drug effects
8
treated untreated
8
effects
6
drug
6
method characterizing
4
characterizing phenotypic
4

Similar Publications