Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background/aims: Microgravity leads to hydrodynamic alterations in the cardiovascular system and is associated with increased angiogenesis, an important aspect of endothelial cell behavior to initiate new vessel growth. Given the critical role of Rho GTPase-dependent cytoskeleton rearrangement in cell migration, small GTPase RhoA might play a potential role in microgravity-induced angiogenesis.
Methods: We examined the organization of actin filaments by FITC-conjugated phalloidin staining, as well as the expression and activity of RhoA by quantitative PCR and Western blot, in human umbilical vein endothelial cells (HUVECs) under normal gravity and simulated microgravity. Effect of simulated microgravity on the wound closure and tube formation in HUVECs, and their dependence on RhoA, were also analyzed by cell migration and tube formation assays.
Results: We show that in HUVECs actin filaments are disorganized and RhoA activity is reduced by simulated microgravity. Blocking RhoA activity either by C3 transferase Rho inhibitor or siRNA knockdown mimicked the effect of simulated microgravity on inducing actin filament disassembly, followed by enhanced wound closure and tube formation in HUVECs, which closely resembled effects seen on microgravity-treated cells. In contrast, overexpressing RhoA in microgravity-treated HUVECs restored the actin filaments, and decreased wound closure and tube formation abilities.
Conclusion: These results suggest that RhoA inactivation is involved in the actin rearrangement-associated angiogenic responses in HUVECs during simulated microgravity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000456060 | DOI Listing |