98%
921
2 minutes
20
Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gα, Gα, Gα, and Gα or β-arrestins, we showed that Gα and Gα are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of β-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or β-arrestin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392687 | PMC |
http://dx.doi.org/10.1074/jbc.M116.763854 | DOI Listing |
Respir Physiol Neurobiol
September 2025
Department of Pediatrics, School of Medicine, Duke University.
Pompe disease is an autosomal recessive neuromuscular disorder characterized by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for lysosomal glycogen degradation in all cells. Respiratory distress is a common symptom among patients with Pompe disease resulting from weakness of primary respiratory neuromuscular units of the diaphragm and genioglossus and the motor neurons which innervate them. The only FDA approved treatment is enzyme replacement therapy (ERT) of recombinant human GAA (rhGAA) which slows the decline of motor function and extends life expectancy.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDFJ Dent Res
September 2025
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
The diabetic microenvironment intensifies M1-type macrophage-mediated inflammation and impairs bone regeneration. Glycophagy-a process of glycogen-selective autophagy that degrades intracellular glycogen into glucose-is essential for maintaining glucose homeostasis under metabolic stress. The role of glycophagy in regulating M1-type polarization remains unclear.
View Article and Find Full Text PDFDiabetologia
September 2025
Centre Universitaire de Diabétologie et de ses Complications, AP-HP, Hôpital Lariboisière, Paris, France.
Aims/hypothesis: Severe hypoglycaemia events (SHE) remain frequent in people with type 1 diabetes despite advanced diabetes technologies. We examined whether time below range (TBR) 3.9 mmol/l (70 mg/dl; TBR70) or 3.
View Article and Find Full Text PDFACS Nano
September 2025
School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Superlinear photodetectors hold significant potential in intelligent optical detection systems, such as near-field imaging. However, their current realization imposes stringent requirements on photosensitive materials, thereby limiting the flexibility of the device integration for practical applications. Herein, a tunable superlinear GaO deep-ultraviolet gate-all-around (GAA) phototransistor based on a p-n heterojunction has been proposed.
View Article and Find Full Text PDF