A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

First Evaluation of PET-Based Human Biodistribution and Dosimetry of F-FAZA, a Tracer for Imaging Tumor Hypoxia. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

F-labeled fluoroazomycinarabinoside (F-FAZA) is a PET biomarker for noninvasive identification of regional tumor hypoxia. The aim of the present phase I study was to evaluate the biodistribution and dosimetry of F-FAZA in non-small cell lung cancer patients. Five patients awaiting surgical resection of histologically proven or radiologically suspected non-small cell lung cancer were prospectively enrolled in the study. The patients underwent PET/CT after injection of 371 ± 32 MBq of F-FAZA. The protocol consisted of a 10-min dynamic acquisition of the heart to calculate the activity in blood, followed by 4 whole-body PET/CT scans, from the vertex to the mid thigh, at 10, 60, 120, and 240 min after injection. Urine samples were collected after each imaging session and at 360 min after injection. Volumes of interest were drawn around visually identifiable source organs to generate time-activity curves. Residence times were determined from time-activity curves, and effective doses to individual organs and the whole body were calculated using OLINDA/EXM 1.2 for the standard male and female phantoms. Blood clearance was characterized by a rapid distribution followed by first-order elimination. The highest uptake was in muscle and liver, with respective percentage injected activity (%IA) peaks of 42.7 ± 5.3 %IA and 5.5 ± 0.6 %IA. The total urinary excretion was 15 %IA. The critical organ, with the highest absorbed radiation doses, was the urinary bladder wall, at 0.047 ± 0.008 and 0.067 ± 0.007 mGy/MBq for the 2- and 4-h voiding intervals, respectively. The effective doses for the standard male and female phantoms were 0.013 ± 0.004 and 0.014 ± 0.004 mSv/MBq, respectively, depending on the voiding schedule. With respect to the available literature, the biodistribution of F-FAZA in humans appeared to be slightly different from that in mice, with a low clearance in humans. Therefore, use of animal data may moderately underestimate radiation doses to organs in humans. Our dosimetry data showed that a 370-MBq injection of F-FAZA is safe for clinical use, similar to other widely used PET ligands. In particular, the effective dose is not appreciably different from those obtained with other hypoxia tracers, such as F-fluoromisonidazole.

Download full-text PDF

Source
http://dx.doi.org/10.2967/jnumed.113.122671DOI Listing

Publication Analysis

Top Keywords

biodistribution dosimetry
8
dosimetry f-faza
8
tumor hypoxia
8
non-small cell
8
cell lung
8
lung cancer
8
min injection
8
time-activity curves
8
effective doses
8
standard male
8

Similar Publications