Effect of Pulse Polarity on Thresholds and on Non-monotonic Loudness Growth in Cochlear Implant Users.

J Assoc Res Otolaryngol

Department of Pediatric Otolaryngology and Neck Surgery, La Timone Children's Hospital, Aix Marseille Université, 264 rue Saint-Pierre, 13385, Marseille Cedex 5, France.

Published: June 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Most cochlear implants (CIs) activate their electrodes non-simultaneously in order to eliminate electrical field interactions. However, the membrane of auditory nerve fibers needs time to return to its resting state, causing the probability of firing to a pulse to be affected by previous pulses. Here, we provide new evidence on the effect of pulse polarity and current level on these interactions. In experiment 1, detection thresholds and most comfortable levels (MCLs) were measured in CI users for 100-Hz pulse trains consisting of two consecutive biphasic pulses of the same or of opposite polarity. All combinations of polarities were studied: anodic-cathodic-anodic-cathodic (ACAC), CACA, ACCA, and CAAC. Thresholds were lower when the adjacent phases of the two pulses had the same polarity (ACCA and CAAC) than when they were different (ACAC and CACA). Some subjects showed a lower threshold for ACCA than for CAAC while others showed the opposite trend demonstrating that polarity sensitivity at threshold is genuine and subject- or electrode-dependent. In contrast, anodic (CAAC) pulses always showed a lower MCL than cathodic (ACCA) pulses, confirming previous reports. In experiments 2 and 3, the subjects compared the loudness of several pulse trains differing in current level separately for ACCA and CAAC. For 40 % of the electrodes tested, loudness grew non-monotonically as a function of current level for ACCA but never for CAAC. This finding may relate to a conduction block of the action potentials along the fibers induced by a strong hyperpolarization of their central processes. Further analysis showed that the electrodes showing a lower threshold for ACCA than for CAAC were more likely to yield a non-monotonic loudness growth. It is proposed that polarity sensitivity at threshold reflects the local neural health and that anodic asymmetric pulses should preferably be used to convey sound information while avoiding abnormal loudness percepts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418159PMC
http://dx.doi.org/10.1007/s10162-016-0614-4DOI Listing

Publication Analysis

Top Keywords

acca caac
24
current level
12
pulse polarity
8
non-monotonic loudness
8
loudness growth
8
pulse trains
8
acac caca
8
lower threshold
8
threshold acca
8
polarity sensitivity
8

Similar Publications

Effect of Pulse Polarity on Thresholds and on Non-monotonic Loudness Growth in Cochlear Implant Users.

J Assoc Res Otolaryngol

June 2017

Department of Pediatric Otolaryngology and Neck Surgery, La Timone Children's Hospital, Aix Marseille Université, 264 rue Saint-Pierre, 13385, Marseille Cedex 5, France.

Most cochlear implants (CIs) activate their electrodes non-simultaneously in order to eliminate electrical field interactions. However, the membrane of auditory nerve fibers needs time to return to its resting state, causing the probability of firing to a pulse to be affected by previous pulses. Here, we provide new evidence on the effect of pulse polarity and current level on these interactions.

View Article and Find Full Text PDF

A periodic table of symmetric tandem mismatches in RNA.

Biochemistry

March 1995

Department of Chemistry, University of Rochester, New York 14627-0216.

The stabilities and structures of a series of RNA octamers containing symmetric tandem mismatches were studied by UV melting and imino proton NMR. The free energy increments for tandem mismatch formation are found to depend upon both mismatch sequence and adjacent base pairs. The observed sequence dependence of tandem mismatch stability is UGGU > GUUG > GAAG > or = AGGA > UUUU > CAAC > or = CUUC approximately UCCU approximately CCCC approximately ACCA approximately AAAA, and the closing base pair dependence is 5'G3'C > 5'C3'G > 5'U3'A approximately 5'A3'U.

View Article and Find Full Text PDF

The chloroplast initiator tRNAfMet from the green alga Scenedesmus obliquus has been purified and its sequence shown to be p C-G-C-A-G-G-A-U-A-G-A-G-C-A-G-U-C-U-Gm-G-D-A-G-C-U-C-m2(2)G-psi-G-G-G-G-C-U-C-A -U-A-A-psi-C-C-C-A-A-U-m7G-D-C-G-C-A-G-G-T-psi-C-A-A-A-U-C-C-U-G-C-U-C-C-U-G-C-A-A-C-C-A-OH. This structure is prokaryotic in character and displays close homologies with a blue green algal initiator tRNAfMet and bean chloroplast initiator tRNAfMet.

View Article and Find Full Text PDF

Previous genetic and biochemical studies led to the identification of two large RNase T1-resistant oligonucleotides, designated the G(IX) (+) and G(IX) (-) oligonucleotides, whose presence in the genomes of closely related murine leukemia viruses is mutually exclusive and predictive of two properties of the viral envelope glycoprotein gp70. Viruses harboring the G(IX) (+) oligonucleotide induce expression of the gp70-associated antigen G(IX) and possess gp70s with more rapid electrophoretic mobility on sodium dodecyl sulfate/polyacrylamide gels than viruses that possess the G(IX) (-) oligonucleotide. The latter viruses fail to induce G(IX) on infected fibroblasts.

View Article and Find Full Text PDF

Chemically synthesized fragments corresponding to the 3' end of tRNAfMet from Escherichia coli were joined by T4-induced RNA ligase to yield a heptadecanucleotide (bases 61--77). The 3' terminus of C-C-A was modified by introduction of the ethoxymethylidene group to prevent intra- and intermolecular self-joining reactions at the 3' end. The terminal trimer was phosphorylated using polynucleotide kinase and joined to C-A-A with RNA ligase.

View Article and Find Full Text PDF