Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360303PMC
http://dx.doi.org/10.2337/db16-0482DOI Listing

Publication Analysis

Top Keywords

pomc neurons
12
protein kinase
8
energy glucose
8
glucose homeostasis
8
food intake
8
weight gain
8
glucose intolerance
8
glucose
5
deletion protein
4
kinase pomc
4

Similar Publications

Equine Pituitary Pars Intermedia Dysfunction.

Vet Sci

August 2025

Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK.

Pituitary pars intermedia dysfunction (PPID) is a common, slowly progressive, neurodegenerative disorder of the older horse. Oxidative damage to the hypothalamic periventricular neurons results in loss of dopaminergic inhibition of the pars intermedia region of the pituitary gland. Consequently, there is increased production of the pro-opiomelanocortin (POMC)-derived hormones normally produced by this region, as well as initial melanocyte hypertrophy and hyperplasia, followed by adenomatous change.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) have several beneficial properties that make them effective as intracellular drug carriers, and their potential for various diagnostic and therapeutic applications is gaining recognition. Depending on their size and shape, AuNPs can cross the central nervous system (CNS) through the blood-brain barrier (BBB). In the CNS, they can exert a variety of influences on neuronal and glial cells, which can be both supportive-promoting cell health and function-and cytotoxic, potentially leading to cellular damage.

View Article and Find Full Text PDF

Anti-obesity medications (AOMs) have become one of the most prescribed drugs in human medicine. While AOMs are known to impact adult neurogenesis in the hypothalamus, their effects on the functional maturation of hypothalamic neurons remain unexplored. Given that AOMs target neurons in the Medial Basal Hypothalamus (MBH), which play a crucial role in regulating energy homeostasis, we hypothesized that AOMs might influence the functional maturation of these neurons, potentially rewiring the MBH.

View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) results from a lack of expression in several paternally inherited, imprinted contiguous genes. Among the genes inactivated in PWS, the Magel2 gene is considered a significant contributor to the etiology of the syndrome. The loss of the Magel2 gene causes abnormalities in growth and fertility and increased adiposity with altered metabolism in adulthood, which aligns with some of the pathologies observed in PWS.

View Article and Find Full Text PDF

The regulation of energy homeostasis is an essential function of every living organism. In mammals a complex interplay of neural networks has evolved to ensure proper adaptation to energy demands, availability, consumption, storage and utilization. While a large set of parallel and redundant brain networks are functionally intertwined in these processes, a specific subset of hypothalamic neurons producing the agonist and antagonist of the anorectic signaling pathway controlled by the melanocortin receptor have been extensively studied.

View Article and Find Full Text PDF