Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hereditary spastic paraplegia, SPG31, is a rare neurological disorder caused by mutations in REEP1 gene encoding the microtubule-interacting protein, REEP1. The mechanism by which REEP1-dependent processes are linked with the disease is unclear. REEP1 regulates the morphology and trafficking of various organelles via interaction with the microtubules. In this study, we collected primary fibroblasts from SPG31 patients to investigate their mitochondrial morphology. We observed that the mitochondrial morphology in patient cells was highly tubular compared with control cells. We provide evidence that these morphological alterations are caused by the inhibition of mitochondrial fission protein, DRP1, due to the hyperphosphorylation of its serine 637 residue. This hyperphosphorylation is caused by impaired interactions between REEP1 and mitochondrial phosphatase PGAM5. Genetically or pharmacologically induced decrease of DRP1-S637 phosphorylation restores mitochondrial morphology in patient cells. Furthermore, ectopic expression of REEP1 carrying pathological mutations in primary neuronal culture targets REEP1 to the mitochondria. Mutated REEP1 proteins sequester mitochondria to the perinuclear region of the neurons and therefore, hamper mitochondrial transport along the axon. Considering the established role of mitochondrial distribution and morphology in neuronal health, our results support the involvement of a mitochondrial dysfunction in SPG31 pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddw425DOI Listing

Publication Analysis

Top Keywords

mitochondrial morphology
16
mitochondrial
9
spg31 patients
8
drp1 hyperphosphorylation
8
morphology patient
8
patient cells
8
reep1
7
morphology
5
morphology cellular
4
cellular distribution
4

Similar Publications

Mitochondria delay action potential propagation.

Commun Biol

September 2025

Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg - Martinsried, Germany.

The internal resistance of axons to ionic current flow determines action potential conduction velocity. Although mitochondria support axonal function, axons have been modeled as organelle-free cables, and mitochondrial impact on conduction velocity, specifically by increasing internal resistance, remains understudied. We combine computational modeling and electron microscopy of forebrain premotor axons controlling birdsong production.

View Article and Find Full Text PDF

In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.

View Article and Find Full Text PDF

Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.

View Article and Find Full Text PDF

Age-related changes in cardiolipin profile and functional consequences of altered fatty acid supply.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1,

Cardiolipins (CLs) are primarily expressed in the inner mitochondrial membrane where they play essential roles in membrane architecture and mitochondrial functions. CLs have a unique structure characterized by four acyl chains with different stoichiometries such as chain length and degree of saturation. CL composition changes with disease and age, but it is largely unknown how dynamic changes affect mitochondrial function.

View Article and Find Full Text PDF

In Brief: Advanced maternal age (AMA) is associated with adverse pregnancy outcomes, particularly those associated with placental dysfunction. This study showed that in a mouse model of AMA, male but not female fetuses had increased placental apoptosis and lipid peroxidation, as well as increased mitochondrial content, suggesting that the placentas of male fetuses in AMA mothers adapt to be able to deliver sufficient energy to the fetus.

Abstract: Although advanced maternal age (AMA) increases the risk of fetal growth restriction (FGR) and stillbirth, the mechanisms leading to the placental dysfunction observed in AMA are unknown.

View Article and Find Full Text PDF