A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Carbohydrate-Neuroactive Hybrid Strategy for Metabolic Glycan Engineering of the Central Nervous System in Vivo. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sialic acids are abundant in the central nervous system (CNS) and are essential for brain development, learning, and memory. Dysregulation in biosynthesis of sialo-glycoconjugates is known to be associated with neurological disorders, CNS injury, and brain cancer. Metabolic glycan engineering (MGE) and bioorthogonal ligation have enabled study of biological roles of glycans in vivo; however, direct investigations of sialoglycans in brain have been intractable. We report a simple strategy utilizing carbohydrate-neuroactive hybrid (CNH) molecules, which exploit carrier-mediated transport systems available at the blood-brain barrier, to access brain via tail vein injection in mice. Peracetylated N-azidoacetyl-d-mannosamine (AcManNAz) conjugated with neuroactive carriers, namely, nicotinic acid, valproic acid, theophylline-7-acetic acid, and choline, were synthesized and evaluated in SH-SY5Y (human neuroblastoma) cells for MGE. Intravenous administration of CNH molecules in mice (C57BL/6J and BALB/cByJ) resulted in robust expression of N-azidoacetyl-neuraminic acid (NeuAz)-carrying glycoproteins in both brain and heart, while the nonhybrid molecule AcManNAz showed NeuAz expression in heart but not in brain. Successful neuroactive carriers were then conjugated with N-butanoyl-d-mannosamine (ManNBut) with a goal to achieve modulation of polysialic acid (polySia) on neural cell adhesion molecules (NCAM). PolySia levels on NCAM in adult mice were reduced significantly upon administration of AcManNBut-nicotinate hybrid, but not with AcManNBut. This novel application of MGE not only offers a noninvasive tool for investigating brain glycosylation, which could be developed in to brain mapping applications, but also serves as a potential drug by which modulation of neural glycan biosynthesis and thus function can be achieved in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b08894DOI Listing

Publication Analysis

Top Keywords

carbohydrate-neuroactive hybrid
8
metabolic glycan
8
glycan engineering
8
central nervous
8
nervous system
8
brain
8
cnh molecules
8
neuroactive carriers
8
acid
5
hybrid strategy
4

Similar Publications