Projected changes in prevailing winds for transatlantic migratory birds under global warming.

J Anim Ecol

Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, 14850, USA.

Published: March 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A number of terrestrial bird species that breed in North America cross the Atlantic Ocean during autumn migration when travelling to their non-breeding grounds in the Caribbean or South America. When conducting oceanic crossings, migratory birds tend to associate with mild or supportive winds, whose speed and direction may change under global warming. The implications of these changes for transoceanic migratory bird populations have not been addressed. We used occurrence information from eBird (1950-2015) to estimate the geographical location of population centres at a daily temporal resolution across the annual cycle for 10 transatlantic migratory bird species. We used this information to estimate the location and timing of autumn migration within the transatlantic flyway. We estimated how prevailing winds are projected to change within the transatlantic flyway during this time using daily wind speed anomalies (1996-2005 and 2091-2100) from 29 Atmosphere-Ocean General Circulation Models implemented under CMIP5. Autumn transatlantic migrants have the potential to encounter strong westerly crosswinds early in their transatlantic journey at intermediate and especially high migration altitudes, strong headwinds at low and intermediate migration altitudes within the Caribbean that increase in strength as the season progresses, and weak tailwinds at intermediate and high migration altitudes east of the Caribbean. The CMIP5 simulations suggest that, during this century, the likelihood of autumn transatlantic migrants encountering strong westerly crosswinds will diminish. As global warming progresses, the need for species to compensate or drift under the influence of strong westerly crosswinds during the initial phase of their autumn transatlantic journey may be diminished. Existing strategies that promote headwind avoidance and tailwind assistance will likely remain valid. Thus, climate change may reduce time and energy requirements and the chance of mortality or vagrancy during a specific but likely critical portion of these species' autumn migration journey.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.12624DOI Listing

Publication Analysis

Top Keywords

global warming
12
autumn migration
12
autumn transatlantic
12
strong westerly
12
westerly crosswinds
12
migration altitudes
12
prevailing winds
8
transatlantic
8
transatlantic migratory
8
migratory birds
8

Similar Publications

Extreme event attribution assesses how climate change affected climate extremes, but typically focuses on single events. Furthermore, these attributions rarely quantify the extent to which anthropogenic actors have contributed to these events. Here we show that climate change made 213 historical heatwaves reported over 2000-2023 more likely and more intense, to which each of the 180 carbon majors (fossil fuel and cement producers) substantially contributed.

View Article and Find Full Text PDF

How terrestrial mean annual temperature (MAT) evolved throughout the past 2 million years (Myr) remains elusive, limiting our understanding of the patterns, mechanisms, and impacts of past temperature changes. Here we report a ~2-Myr terrestrial MAT record based on fossil microbial lipids preserved in the Heqing paleolake, East Asia. The increased amplitude and periodicity shift of glacial-interglacial changes in our record align with those in sea surface temperature (SST) records.

View Article and Find Full Text PDF

Degraded lands are crucial for achieving the CoP-26 targets such as, achieving net-zero to limit global warming by 2030. Transforming these lands with sustainable and nature positive practice is vital to increasing C stocks, offsetting greenhouse gas (GHG) emissions, and improving land values. The degraded shallow basaltic landscape was rehabilitated through bio-engineering strategies in 2012-13 and assessed the impact of fruit trees (mango, pomegranate, and coconut) cultivation on GHG mitigation potential, yield, generating C credits, and oxygen production over eight-years (up to 2021-22).

View Article and Find Full Text PDF

This study investigates high-light-tolerant Nannochloropsis oceanica Rose Bengal mutants (RB2 and RB113) for bioremediation of shrimp aquaculture wastewater (SWW) under increased temperature and light, simulating future climate change. Cultivations were performed under 250 μmol photons m·s with flue gas CO₂ supply. At 18 °C, RB mutants and wild-type (WT) strain showed similar growth.

View Article and Find Full Text PDF

Temperature elevation intensifies the toxicity of metals to terrestrial invertebrates: results of a meta-analysis.

Braz J Biol

September 2025

Universidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia, Departamento de Engenharia Ambiental, São José dos Campos, SP, Brasil.

The present study carried out the first systematic review with meta-analysis on the effects of metals and temperature rise individually and their associations with terrestrial invertebrates. Initially, a systematic review of peer-reviewed articles was performed. Meta-analysis demonstrated that metals negatively affected the fitness of annelids, arthropods, and nematodes and positively affected physiological regulation in annelids.

View Article and Find Full Text PDF