Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also through the formation of biofilms. Biofilms have been shown to be highly resistant to a number of antimicrobials and can be extremely difficult to remove once they are established. In parallel, the growing concern of consumers regarding the use of chemically derived antimicrobials within food has led to a drive toward more natural products. As a consequence, the use of naturally derived antimicrobials has become of particular interest. In this study we investigated the efficacy of nisin A and its bioengineered derivative M21A in combination with food grade additives to treat biofilms of a representative foodborne disease isolate of . Investigations revealed the enhanced antimicrobial effects, in liquid culture, of M21A in combination with citric acid or cinnamaldehyde over its wild type nisin A counterpart. Subsequently, an investigation was conducted into the effects of these combinations on an established biofilm of the same strain. Nisin M21A (0.1 μg/ml) alone or in combination with cinnamaldehyde (35 μg/ml) or citric acid (175 μg/ml) performed significantly better than combinations involving nisin A. All combinations of M21A with either citric acid or cinnamaldehyde eradicated the biofilm (in relation to a non-biofilm control). We conclude that M21A in combination with available food additives could further enhance the antimicrobial treatment of biofilms within the food industry, simply by substituting nisin A with M21A in current commercial products such as Nisaplin (Danisco, DuPont).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127793PMC
http://dx.doi.org/10.3389/fmicb.2016.01939DOI Listing

Publication Analysis

Top Keywords

m21a combination
16
combination food
12
citric acid
12
derivative m21a
8
food grade
8
grade additives
8
foodborne disease
8
derived antimicrobials
8
acid cinnamaldehyde
8
nisin m21a
8

Similar Publications

The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also through the formation of biofilms. Biofilms have been shown to be highly resistant to a number of antimicrobials and can be extremely difficult to remove once they are established.

View Article and Find Full Text PDF

In certain unique clinical settings, the ability of the antimicrobial agent administered to kill the pathogen outright may be quite important. These situations invariably involve infection of a site not easily accessed by host defenses and/or of a structure with essential anatomic or physiologic function such as the heart (endocarditis), central nervous system (meningitis), or bone (osteomyelitis). Likewise, infections in immunosuppressed hosts, especially those who are neutropenic, are often thought to require microbicidal therapy.

View Article and Find Full Text PDF