A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Neochord placement versus triangular resection in mitral valve repair: A finite element model. | LitMetric

Neochord placement versus triangular resection in mitral valve repair: A finite element model.

J Surg Res

Department of Surgery, University of California, San Francisco, California; Department of Bioengineering, University of California, San Francisco, California; Department of Surgery, Veterans Affairs Medical Center, San Francisco, California. Electronic address:

Published: November 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Recurrent mitral regurgitation after mitral valve repair is common, occurring in nearly 50% of patients within 10 years of surgery. Durability of repair is partly related to stress distribution over the mitral leaflets. We hypothesized that repair with neochords (NCs) results in lower stress than leaflet resection (LR).

Materials And Methods: Magnetic resonance imaging and 3D echocardiography were performed before surgical repair of P2 prolapse in a single patient. A finite element model of the left ventricle and mitral valve was created previously, and the modeling program LS-DYNA was used to calculate leaflet stress for the following repairs: Triangular LR; LR with ring annuloplasty (LR + RA); One NC; Two NCs; and 2NC + RA.

Results: (1) NC placement resulted in stable posterior leaflet stress: Baseline versus 2 NC at end diastole (ED), 12.1 versus 12.0 kPa, at end systole (ES) 20.3 versus 21.7 kPa. (2) In contrast, LR increased posterior leaflet stress: Baseline versus LR at ED 12.1 versus 40.8 kPa, at ES 20.3 versus 46.1 kPa. (3) All repair types reduced anterior leaflet stress: Baseline versus 2 NC versus LR 34.2 versus 25.8 versus 20.6 kPa at ED and 80.8 versus 76.8 versus 67.8 kPa at ES. (4) The addition of RA reduced leaflet stress relative to repair without RA.

Conclusions: Neochord repair restored normal leaflet coaptation without creating excessive leaflet stress, whereas leaflet resection more than doubled stress across the posterior leaflet. The excess stress created by leaflet resection was partially, but not completely, mitigated by ring annuloplasty.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142216PMC
http://dx.doi.org/10.1016/j.jss.2016.07.011DOI Listing

Publication Analysis

Top Keywords

leaflet stress
24
versus
13
mitral valve
12
leaflet resection
12
posterior leaflet
12
stress baseline
12
baseline versus
12
leaflet
11
stress
10
repair
8

Similar Publications