Phylogenetic analysis of basic helix-loop-helix transcription factors in the genome of a typical human-disease vector.

Am J Transl Res

Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical UniversityHefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical UniversityHefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technolo

Published: November 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

, the black-legged tick, is one of the most common human-disease vectors and transmits species, such as , as well as , etc. As basic helix-loop-helix (bHLH) transcription factors have been recognized for many years as important regulators of various developmental processes, we performed phylogenetic analysis of the black-legged tick genome in order to identify the number and family of bHLH transcription factors. Because bHLH family members have been identified in many organisms, including silkworm and fruit fly, we were able to conduct this survey and identify 58 putative bHLH transcription factors. Phylogenetic analysis revealed that the black-legged tick has 26, 10, 9, 1, 9, and 1 member in groups A, B, C, D, E, and F, respectively, whereas two were orphan genes. This analysis also revealed that unlike silkworm and fruit fly, the black-legged tick has no Mesp, Mlx, or TF4 family members, but has one more MyoRb family member. The present study provides useful background information for future studies of the black-legged tick as a disease vector with the goal of prevention and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126327PMC

Publication Analysis

Top Keywords

black-legged tick
20
transcription factors
16
phylogenetic analysis
12
bhlh transcription
12
basic helix-loop-helix
8
family members
8
silkworm fruit
8
fruit fly
8
analysis revealed
8
black-legged
5

Similar Publications

The role of Denisovan paleohabitats in shaping modern human genetic resistance to viral, bacterial, and parasitic infections.

J Hum Evol

September 2025

Sustainability Solutions Research Lab, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary. Electronic address:

Denisovans contributed notably to the genomes of present-day East and Southeast Asians. However, the relationship between the inhabited paleohabitats and the adaptive genetic traits related to infections in modern humans remains underexplored. This study uses geospatial techniques to analyze climatic factors associated with three Denisovan archaeological sites linked to nine specimens.

View Article and Find Full Text PDF

New tick records in the western Brazilian Amazon, with notes on rickettsial infection and molecular evidence for Amblyomma crassum in Brazil.

Acta Trop

September 2025

Instituto de Ciências Biomédicas, Universidade de São Paulo - ICB5/USP, Monte Negro, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - INCT-EpiAmO, Porto Velho, RO, Brazil; Centro de Pesquisas em Medicina Tropical - CEPEM, Porto Velho, RO, Brazil; Laboratório de Medicina T

This study evaluated the richness and abundance of ticks collected during two years in forest fragments of the state of Acre, western Brazilian Amazon. Considering all the environmental and host collections, the following 15 tick species were collected: Amblyomma coelebs, Amblyomma crassum, Amblyomma humerale, Amblyomma latepunctatum, Amblyomma longirostre, Amblyomma naponense, Amblyomma nodosum, Amblyomma oblongoguttatum, Amblyomma ovale, Amblyomma pacae, Amblyomma rotundatum, Amblyomma scalpturatum, Haemaphysalis juxtakochi, Ixodes luciae and Rhipicephalus microplus. Data from the most two abundant tick species, A.

View Article and Find Full Text PDF

An assessment of the possible recent establishment of Hyalomma rufipes in Hungary.

Ticks Tick Borne Dis

September 2025

Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary; HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, Hungary.

The aim of this study was to assess the viability of an opportunistic population of Hyalomma rufipes, as evidence of reproduction had been documented in the southern part of Central Europe, specifically Hungary, in 2022. To assess the current situation, tick collections targeting various mammalian species were organized with the assistance of local veterinarians between September 2022 and May 2024. Over the study period, 1502 ticks were collected; however, none belonged to the Hyalomma genus.

View Article and Find Full Text PDF

Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species.

View Article and Find Full Text PDF

Objective: To report the prevalence of vomiting and regurgitation in dogs with tick paralysis (TP) caused by Ixodes holocylus and investigate their association with respiratory dysfunction and survival.

Methods: Medical records at a single referral and emergency hospital in Sydney, between October 2021 and November 2024, were retrospectively reviewed. Dogs with clinical signs consistent with TP and with tick or tick crater found were included in the study.

View Article and Find Full Text PDF