Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: To develop an efficient P magnetic resonance spectroscopy (MRS) method for measuring creatine kinase (CK) activity, adenosine triphosphate (ATP) synthesis, and motion dynamics in the human brain at 7 Tesla (T).
Methods: Three band inversion modules differing in center frequency were used to induce magnetization transfer (MT) effect in three exchange pathways: (i) CK-mediated reaction PCr → γ-ATP; (ii) de novo ATP synthesis Pi → γ-ATP; and (iii) ATP intramolecular P- P cross-relaxation γ-(α-) ↔ β-ATP. The resultant MT data were analyzed using a 5-pool model in the format of magnetization matrix according to Bloch-McConnell-Solomon formalism.
Results: With a repetition time (TR) of 4 s, the scan time for each module was approximately 8 min. The rate constants were k 0.38 ± 0.02 s , k 0.19 ± 0.02 s , and σ 0.19 ± 0.04 s , corresponding to ATP rotation correlation time τ (0.8 ± 0.2) ·10 s. The T relaxation times were Pi 7.26 ± 1.76 s, PCr 5.99 ± 0.58 s, γ-ATP 0.98 ± 0.07 s, α-ATP 0.95 ± 0.04 s, and β-ATP 0.68 ± 0.03 s.
Conclusion: Short-TR band inversion modules provide a time-efficient way of measuring brain ATP metabolism and could be useful in studying metabolic disorders in brain diseases. Magn Reson Med 78:1657-1666, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438784 | PMC |
http://dx.doi.org/10.1002/mrm.26560 | DOI Listing |