A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The Structure of Ontogenies in a Model Protocell. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emergent individuals are often characterized with respect to their viability: their ability to maintain themselves and persist in variable environments. As such individuals interact with an environment, they undergo sequences of structural changes that correspond to their ontogenies. Ultimately, individuals that adapt to their environment, and increase their chances of survival, persist. This article provides an initial step towards a more formal treatment of these concepts. A network of possible ontogenies is uncovered by subjecting a model protocell to sequential perturbations and mapping the resulting structural configurations. The analysis of this network reveals trends in how the protocell can move between configurations, how its morphology changes, and how the role of the environment varies throughout. Viability is defined as expected life span given an initial configuration. This leads to two notions of adaptivity: a local adaptivity that addresses how viability changes in plastic transitions, and a global adaptivity that looks at longer-term tendencies for increased viability. To demonstrate how different protocell-environment pairings produce different patterns of ontogenic change, we generate and analyze a second ontogenic network for the same protocell in a different environment. Finally, the mechanisms of a minimal adaptive transition are analyzed, and it is shown that these rely on distributed spatial processes rather than an explicit regulatory mechanism. The combination of this model and analytical techniques provides a foundation for studying the emergence of viability, ontogeny, and adaptivity in more biologically realistic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1162/ARTL_a_00215DOI Listing

Publication Analysis

Top Keywords

model protocell
8
viability
5
structure ontogenies
4
ontogenies model
4
protocell
4
protocell emergent
4
emergent individuals
4
individuals characterized
4
characterized respect
4
respect viability
4

Similar Publications