Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Here, we show that a partner-switching system of the aquatic Proteobacterium Shewanella oneidensis regulates post-translationally σ (also called RpoS), the general stress response sigma factor. Genes SO2118 and SO2119 encode CrsA and CrsR, respectively. CrsR is a three-domain protein comprising a receiver, a phosphatase, and a kinase/anti-sigma domains, and CrsA is an anti-sigma antagonist. In vitro, CrsR sequesters σ and possesses kinase and phosphatase activities toward CrsA. In turn, dephosphorylated CrsA binds the anti-sigma domain of CrsR to allow the release of σ This study reveals a novel pathway that post-translationally regulates the general stress response sigma factor differently than what was described for other proteobacteria like Escherichia coli We argue that this pathway allows probably a rapid bacterial adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207083 | PMC |
http://dx.doi.org/10.1074/jbc.M116.751933 | DOI Listing |